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Abstract: 

Natural intelligence (NI) models serve as the foundation for computational intelligence (CI) 

models, which are essential for resolving complicated real-world issues in a variety of fields, such 

as robotics, finance, healthcare, and optimization. Artificial neural networks (ANNs) and 

evolutionary algorithms (EAs) are two of the most well-known CI techniques. EAs are especially 

useful for optimization tasks because they are good at discovering optimal or nearly optimal 

solutions in high-dimensional search spaces, simulating the process of natural selection. On the 

other hand, artificial neural networks (ANNs), which are designed to mimic the neural architecture 

of the human brain, have shown exceptional performance in tasks involving pattern recognition, 

classification, and prediction by means of data-driven learning. In-depth discussion of the 

fundamental ideas behind ANNs and EAs is provided in this paper, along with an overview of each 

technology's contributions to artificial intelligence (AI) and broader applications. We examine 



 

 

current developments and applications in important industries, demonstrating the growing 

significance of CI in resolving complex issues. The study also addresses hybrid models that 

combine various methods to improve problem-solving abilities. Tables with a comparative 

examination of performance measures from various models offer numerical insights into their 

effectiveness. Future developments in CI are discussed in the study's conclusion, with a focus on 

how incorporating cutting-edge technology like quantum computing and neuromorphic hardware 

might enhance the discipline. This thorough analysis not only establishes the foundation for future 

computational intelligence research paths but also emphasizes the significance of ANNs and EAs. 

Introduction: 

Within artificial intelligence (AI), computational intelligence (CI) has become a prominent 

topic devoted to creating adaptive systems that can solve challenging, real-world issues using 

techniques derived from natural processes. The core of artificial intelligence (CI) is its capacity 

to take inspiration from biological systems, resulting in the development of algorithms that 

have the capacity to learn, adapt, and change over time. Artificial neural networks (ANNs) and 

evolutionary algorithms (EAs) stand out among the numerous CI paradigms because of their 

efficiency, adaptability, and robustness in handling a variety of tasks. 

Natural selection and genetics serve as the foundation for evolutionary algorithms (EAs), 

which use mechanisms including crossover, mutation, and selection to create solutions to 

optimization problems. Applications for these algorithms can be found in a wide range of 

industries, including engineering, banking, logistics, and even the arts and music. Since EAs 

are inherently parallel, they can investigate several solutions at once, which makes them ideal 

for challenging optimization problems where more conventional approaches could falter. 



 

 

ANNs, on the other hand, are made to resemble how the human brain interprets data. They are 

made up of networked neurons that cooperate to learn from information and classify or 

anticipate things. Deep learning, a branch of machine learning based on artificial neural 

networks (ANNs), has transformed a number of industries by opening up new avenues for 

advances in natural language processing, autonomous systems, and picture and audio 

recognition. ANNs make it possible to create models that effectively generalize to previously 

unseen data by capturing complex patterns in huge datasets. 

Hybrid models have emerged as a result of the synergy between ANNs and EAs, combining 

the advantages of both techniques to address even more complicated issues. EAs, for example, 

can be used to optimize the parameters and structure of ANNs, leading to better performance 

across a range of applications. On the other hand, more efficient search techniques can be made 

possible by using ANNs to simulate the fitness landscape in EAs. 

With a special emphasis on ANNs and EAs, this study seeks to give a thorough overview of 

computational intelligence models. We will look into their underlying ideas, salient 

characteristics, and uses. We'll also talk about some recent developments in the subject. 

Additionally, with the use of quantitative data from other research, we will provide a 

comparative analysis of the performance of various models. Lastly, we will look at potential 

future directions for computational intelligence, emphasizing how incorporating state-of-the-

art technologies could improve these models' capabilities even more. 

We believe that this analysis will highlight the significance of CI in today's technological 

environment and stimulate more study in the field, especially in the area of integrating neural 

networks and evolutionary algorithms to tackle the more complicated problems that society 

faces. 



 

 

 

 

Fig 1: Computational Intelligence 

2. Evolutionary Algorithms (EAs) 

A class of optimization methods known as evolutionary algorithms (EAs) is motivated by the 

ideas of natural evolution. In order to find the best or almost best answers to challenging issues, 

these algorithms work with a population of candidate solutions, evolving them over 

generations. Natural selection and genetics are biological processes that are paralleled by the 

basic mechanics of EAs, which are based on the notions of selection, mutation, and crossover. 

This section examines the numerous kinds of EAs, their essential elements, benefits, and 

drawbacks, as well as the ways in which they are applied in diverse fields. 

2.1 Essential Elements of EAs  



 

 

Evolutionary algorithms depend on a few essential elements to be successful:  

 

1. Population: A group of potential fixes, frequently shown as strings or vectors. The 

population's size and diversity have a big impact on how well the algorithm works.  

 

2. Fitness Function: An algorithm that assesses each potential solution according to how well 

it addresses the current issue. More successful solutions are given higher values by the fitness 

function, which governs the selection process.  

 

3. Selection Mechanism: A process for choosing individuals from the existing population to 

become future generations' progenitors. Rank-based, tournament, and roulette wheel selection 

are examples of common selection methods.  

 

4. Genetic Operators: Procedures used on chosen individuals to produce new progeny. There 

are two main genetic operators:  

• Crossover: Generates one or more offspring by combining two parent solutions. This 

procedure encourages information sharing amongst solutions and resembles sexual 

reproduction. 

• Mutation: Provides arbitrary changes to potential solutions to guarantee population 

variety. Premature convergence is avoided and new regions of the solution space are 

explored with the aid of mutation. 



 

 

2.2 Evolutionary Algorithm Types 

Different kinds of evolutionary algorithms have been created to handle particular issues and 

demands:  

 

1. First, genetic algorithms, or GAs: GAs, the most well-known type of EA, work with 

strings of fixed length that represent possible solutions. Numerous optimization issues, 

including as scheduling, vehicle routing, and feature selection, have seen successful use of 

them.  

 

2. Genetic Programming (GP): GP extends the principles of GAs to evolve complete 

computer programs or mathematical statements. This method works especially well for 

applications involving automatic programming, developing game strategies, and symbolic 

regression. 

  

3. Evolutionary Strategies (ES): ES stresses the self-adaptation of mutation rates and 

optimizes real-valued parameters. Because of its flexibility, ES may be used to solve ongoing 

optimization issues like machine learning model tweaking and engineering design.  

 

4.  Differential Evolution (DE): DE is an optimization technique that bases its search strategy 

on the distinctions between potential solutions. It is widely used in control and engineering 

problems because it works especially well for multi-modal and non-differentiable objective 

functions.  



 

 

 

5.  Estimation of Distribution Algorithms (EDAs): EDAs learn and sample from the 

distribution of chosen candidate solutions to generate new candidates, in contrast to standard 

EAs that employ genetic operators. This method has been successfully used in challenging 

optimization assignments and enables more efficient search space exploration.  

 

2.3 Benefits of EAs Compared to conventional optimization techniques, EAs have the 

following advantages: 

• Robustness: EAs are well-suited for real-world issues because they can manage noisy, 

discontinuous, and multi-modal search spaces with ease. 

  

• Parallelism: In many situations, the population-based method enables the evaluation of 

candidate solutions in parallel, which accelerates convergence.  

 

• Flexibility: EAs are easily customizable with alternative representation schemes, operators, 

and fitness functions, and they may be applied to a wide range of problem domains.  

 

2.4 EAs's Limitations  

Even with its advantages, EAs have drawbacks: 



 

 

 

• Cost of Computation: EAs can be computationally costly, particularly when dealing with 

issues that call for a lot of function evaluations.  

 

• Parameter Sensitivity: A number of factors, including population size, mutation rate, and 

selection strategy, can have an impact on how well EAs work. Often, proper tuning is required 

to get the best outcomes.  

 

• Convergence Problems: When population variety declines across generations, EAs may 

prematurely converge to local optima. This problem can be lessened by employing techniques 

like preserving a diversified population or adding ways to escape local optima.  

 

2.5 EA Applications  

EAs have been effectively used in a variety of domains, such as:  

 

• Engineering Design: By balancing performance and restrictions, EAs are used to optimize 

designs for mechanical parts, electrical circuits, and structures.  

 

• Financial Modeling: By identifying the best investing techniques, EAs assist with risk 

management, algorithmic trading, and portfolio optimization.  



 

 

 

• Bioinformatics: EAs support advances in genomics and personalized medicine by helping 

with gene selection, protein structure prediction, and phylogenetic analysis.  

 

• Robots: To improve a robot's ability to adapt in changing situations, EAs optimize its path 

planning, behaviors, and control systems.  

•All things considered, evolutionary algorithms offer strong instruments for solving 

challenging optimization issues that are modeled after natural processes. The ongoing 

refinement and expansion of EAs will probably make them more applicable to new problems 

in a variety of fields.  

 

3. Neural Artificial Networks (ANNs)  

 

Computational models called Artificial Neural Networks (ANNs) are modeled after the 

architecture and operations of the human brain. In order to enable ANNs to recognize patterns 

and draw conclusions from data, they are composed of interconnected layers of nodes 

(neurons) that process and transfer information. Because of their exceptional capacity to carry 

out difficult tasks over a wide range of domains and generalize from examples, artificial neural 

networks (ANNs) have emerged as a key component of contemporary machine learning and 

artificial intelligence.  

 



 

 

An overview of the basic architecture of artificial neural networks (ANNs), the learning 

process, the different types of ANNs, their benefits, drawbacks, and uses is given in this 

section.  

 

3.1 Architecture of ANNs  

Three primary types of layers make up an ANN's architecture: 

  

1. Input Layer: The initial layer to which features from the dataset are fed. In this layer, every 

neuron is associated with a particular input variable. The quantity of input characteristics and 

the number of neurons in the input layer are the same.  

 

2. Hidden Layer(s): Data-processing intermediate layers that receive input. Multiple neurons 

can be found in each of the one or more hidden layers that make up an ANN.  

The neurons in the hidden layers apply various activation functions to transform the weighted 

sum of inputs, allowing the network to learn complex patterns and relationships. 

3. Output Layer: The last layer that generates the output of the network. The number of target 

variables in regression tasks or classes in classification tasks is correlated with the number of 

neurons in the output layer. 

  

3.2 The Process of Learning 



 

 

An ANN normally goes through two rounds of learning: backpropagation and forward 

propagation.  

 

• Forward Transmission: In this stage, the network receives input data, and each neuron 

determines its output by adding up all of its weighted inputs and calculating its activation 

function. Up until they reach the output layer, where the last prediction is made, the outputs 

are transmitted across the network.  

 

• Backpropagation: Using a loss function to compare the anticipated output to the actual target 

values, the network determines the error after receiving the prediction. Stochastic gradient 

descent (SGD) and other optimization methods are used to update the weights of the 

connections as the error spreads backward through the network. Through this approach, the 

network is able to grow in performance over time by learning from its failures.  

 

3.3 Types of ANNs Different kinds of ANNs have been created to tackle particular 

problems and tasks:  

 

1. Forward Neural Networks (FNNs): The most basic kind of artificial neural network 

(ANN), in which node connections do not form cycles. Information flows in one direction, 

from input to output, making them suited for basic classification and regression problems.  

 



 

 

2. Convolutional Neural Networks (CNNs): Primarily used for image processing and 

computer vision tasks, CNNs utilize convolutional layers to automatically extract hierarchical 

features from images. CNNs excel at tasks such as image classification, object detection, and 

segmentation. 

3. Recurrent Neural Networks (RNNs): RNNs are designed to handle sequential data, 

making them ideal for tasks like natural language processing and time series analysis. They 

maintain a hidden state that captures information from previous time steps, enabling the 

network to learn temporal dependencies. Variants like Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU) networks address issues related to vanishing gradients in 

traditional RNNs. 

4. Generative Adversarial Networks (GANs): GANs are networks made up of a 

discriminator and a generator that are in competition with one another. The discriminator 

assesses the veracity of the data, whereas the generator produces artificial data. GANs have 

acquired appeal in applications such as picture production, style transfer, and data 

augmentation.  

5.Autoencoders: These networks are trained to compress input data into a representation that 

is lower-dimensional, from which the original data is subsequently reconstructed. 

Autoencoders can be applied to denoising, anomaly detection, and dimensionality reduction 

problems.  

 

3.4 Advantages of ANNs  



 

 

 

The several advantages that ANNs provide have aided in their widespread adoption:  

 

• Capacity to Learn Non-Linear interactions: ANNs are appropriate for a variety of 

applications because they possess the ability to simulate intricate non-linear interactions 

between inputs and outputs. 

  

• Scalability: ANNs may be made to tackle complicated tasks and big datasets, especially with 

the development of deep learning architectures and the availability of strong computing 

resources.  

 

• Robustness to Noise: ANNs are useful for real-world applications because they can 

generalize effectively even in the presence of noise and missing data.  

 

• End-to-End Learning: A more efficient workflow is possible since ANNs can learn straight 

from raw data without requiring a lot of feature engineering.  

 

3.5 Limitations of ANNs  

 

Even with their advantages, ANNs have several drawbacks:  



 

 

 

• Requirement for Data: ANNs usually need a lot of labeled data to be trained, which can be 

problematic in fields where data is hard to come by or difficult to acquire. 

  

• Computational Intensity: Deep neural network training can be a laborious and 

computationally demanding process that calls for specialized gear, like GPUs, for effective 

processing.  

 

• Overfitting: Artificial neural networks have a tendency to overfit, especially when trained 

on short datasets. Regularization strategies like weight decay and dropout are frequently used 

to lessen this problem. 

  

• Lack of Interpretability: Because ANNs are frequently referred to as "black boxes," it might 

be difficult to understand how they make decisions. In crucial applications like healthcare and 

finance, where comprehending model behavior is crucial, this lack of transparency may 

provide challenges.  

 

3.6 Uses for Annular Networks  

 

ANNs have been effectively used in a number of fields: 



 

 

  

• Computer Vision: ANNs, in particular CNNs, have transformed image recognition tasks, 

opening up new opportunities for medical imaging, autonomous cars, and facial recognition.  

 

• Natural Language Processing: In tasks like sentiment analysis, text production, and 

language translation, RNNs and their variations have achieved notable progress.  

 

• Healthcare: ANNs leverage vast amounts of patient data to enhance results through 

predictive modeling, disease diagnosis, and personalized therapy.  

 

• Finance: ANNs are used to provide insights and predictions based on complicated financial 

data in algorithmic trading, credit scoring, and fraud detection. 

 

• Robotics: Artificial Neural Networks (ANNs) help robotic systems make decisions and take 

control, allowing them to operate independently and negotiate intricate settings.  

 

Table 1: Comparison of Evolutionary Algorithms and Artificial Neural Networks 

Feature 

Evolutionary Algorithms 

(EAs) 

Artificial Neural 

Networks (ANNs) 



 

 

Inspiration 

Natural selection and 

genetics 

Biological neural processes 

Optimization 

Approach 

Population-based search 

Gradient-based 

optimization 

(backpropagation) 

Solution 

Representation 

Chromosomes (potential 

solutions) 

Nodes and connections 

(neural architectures) 

Search Capability 

Global search for optimal 

solutions 

Local search in parameter 

space 

Flexibility 

Can be applied to various 

problem domains 

Primarily used for pattern 

recognition and function 

approximation 

Convergence Speed 

Generally slower due to 

population dynamics 

Can converge quickly with 

proper initialization 

Scalability 

Highly scalable to complex 

problems 

Limited by network 

architecture 

Handling Noise 

Robust to noise in fitness 

evaluations 

Sensitive to noise in data 

 

4. Hybrid Models: Combining ANNs with EAs 



 

 

In the field of computational intelligence, hybrid models—which combine the advantages of 

artificial neural networks (ANNs) and evolutionary algorithms (EAs)—have drawn a lot of 

interest. These models combine the learning capability of ANNs with the optimization 

capabilities of EAs to more successfully handle complicated issues. Researchers can design 

systems that leverage the pattern recognition and generalization powers of ANNs along with 

the adaptive and global search capabilities of EAs by combining these two paradigms. The 

fundamentals of hybrid models, their architecture, benefits, drawbacks, and range of uses are 

all covered in this section. 

4.1 Hybrid Modeling Principles  

One of several methods is usually used when integrating EAs with ANNs:  

 

1. EA for ANN Training: EAs can be used to optimize the weights and architecture of ANNs. 

EAs can search the weight space more broadly than traditional backpropagation approaches, 

which may result in better-trained models. Conventional backpropagation methods for training 

ANNs can occasionally lead to local optima. This method defines the ANN structure and uses 

an EA to perform a population-based search to get the ideal weights.  

 

2. ANN for EA Optimization: In contrast, the fitness landscape in EAs may also be modeled 

using ANNs. Using an ANN to approximate the fitness function allows EAs to make better 

decisions about which regions of the solution space to investigate. This method lowers the 

computational burden of directly evaluating the fitness function, particularly in cases where 

computing it is costly.  



 

 

 

3. Co-evolutionary Frameworks: Co-evolutionary models involve the simultaneous 

evolution of ANNs and EAs. For instance, EAs can adjust the ANN's parameters as the model 

gains experience and becomes more adept at completing a given task. Both components' 

performance and adaptability may be improved by this mutually beneficial interaction.  

 

4. Hybrid Architecture: Layered architectures utilizing EAs to produce candidate solutions 

that ANNs then assess and improve are another way that hybrid models can be created. Here, 

ANNs offer more in-depth analysis of the data, and EAs act as a meta-optimizer, directing the 

search procedure. 

 

4.2 Hybrid Model Architecture 

 

Hybrid model architectures might differ significantly based on the particular application and 

integration technique. Nonetheless, a typical framework can have the following elements:  

• Initialization Phase: An initial population of candidate solutions produced by the EA is used 

to kick off the process. A different ANN configuration (e.g., architecture, weight initialization) 

may be represented by each solution. 

  

• Evaluation Phase: Using a fitness function, which may include performance criteria like 



 

 

accuracy, precision, recall, or any other pertinent parameter, the ANNs corresponding to each 

potential solution are trained and assessed.  

 

• Selection and Evolution Phase: The EA chooses the top-performing candidates to undergo 

crossover and mutation operations in order to create offspring based on the evaluation results. 

This stage refines the pool of potential solutions iteratively.  

 

• Finalization Phase: The best-performing ANN is chosen as the final model once the EA 

converges or achieves a certain number of generations. This model might go through additional 

refinement or validation using a different dataset.  

 

4.3 Benefits of Hybrid Vehicles  

 

Hybrid models that combine ANNs and EAs have the following benefits:  

 

• Better Performance: Hybrid models outperform those that employ either technique alone 

by fusing the local learning powers of ANNs with the global search powers of EAs. They are 

frequently better at breaking out of local optima and more resistant to overfitting.  

 



 

 

• Adaptability: Hybrid models are flexible instruments for handling challenging optimization 

and classification tasks in a variety of areas. They may be tailored to different issue types.  

 

• Shorter Training Time: ANNs require less time to train overall because EAs can find the 

best topologies and weight configurations more quickly than they can with conventional 

training techniques. 

 

• Robustness: Hybrid models are more resilient when handling complicated and noisy 

datasets, which makes them ideal for real-world settings where data integrity may be at risk.  

 

4.4 Hybrid Model Restrictions  

Hybrid models, while offering benefits, are not without restrictions.  

 

• Added Complexity: The combination of two different paradigms may result in more 

implementation and parameter adjustment complexity. To guarantee successful collaboration, 

managing the relationship between the ANN and EA components may need considerable 

thought.  

 

• Computational Demand: Because hybrid models may need a large amount of resources for 

both the ANN and EA training procedures, they might be computationally demanding. 



 

 

Applications needing real-time processing or big datasets may find this to be a hindrance.  

 

• Parameter Sensitivity: The settings used for both the ANN and EA have a significant impact 

on how well hybrid models perform. Achieving optimal performance requires proper tuning, 

which can be a difficult undertaking.  

 

4.5 Hybrid Model Applications  

 

Applications for hybrid models that blend ANNs with EAs may be found in many different 

fields:  

 

• Financial Forecasting: By utilizing the optimization powers of EAs for feature selection and 

ANN parameter tweaking, hybrid models are utilized to forecast stock prices and market 

movements.  

 

• Healthcare Diagnostics: By using the advantages of both paradigms to analyze complex 

patient data, hybrid models might improve the accuracy of disease prediction and diagnosis in 

medical applications.  

 

• Robotics and Control Systems: By optimizing control techniques, hybrid approaches let 



 

 

robotic systems navigate and adapt more effectively in dynamic settings.  

 

• Image and Signal Processing: Hybrid models combine the advantages of ANNs and EAs to 

efficiently perform tasks like image recognition, denoising, and feature extraction.  

 

• Game Development: By using ANNs for in-the-moment decision-making and evolving 

strategies through EAs, hybrid models can improve the AI behavior of characters in video 

games.  

Table 2: Applications of Hybrid Models Combining EAs and ANNs 

Application Area Description Hybrid Model Approach 

Finance 

Stock price prediction and 

risk assessment 

EAs optimize ANN 

architectures and weights 

Healthcare 

Disease diagnosis and 

patient outcome prediction 

EAs enhance feature 

selection for ANNs 

Robotics 

Navigation and control 

strategies 

ANNs evaluate fitness for 

evolving strategies 

Image Processing 

Image recognition and 

classification 

Hybrid approach to 

improve accuracy and 

speed 



 

 

Environmental 

Monitoring 

Predicting environmental 

changes and impacts 

EAs optimize sensor 

placement for ANNs 

 

5. ANNs and EAs's applications  

 

5.1 Enhancement 

  

EAs have been widely used to solve optimization issues in network architecture, scheduling, 

and resource allocation. Conversely, ANNs are very good in pattern recognition, data 

classification, and function approximation. When these methods are combined, multi-objective 

optimization problem solutions perform better.  

 

5.2 Data mining and machine learning  

 

EAs have been applied to feature selection, ensemble learning, and hyperparameter 

optimization in machine learning. ANNs are frequently used for applications including 

anomaly detection, regression, and classification. Better generalization skills and more 

effective solution space exploration are made possible by the hybrid models.  

 

Table 3: Summary of Selected Hybrid Model Studies 



 

 

Study 

Reference 

Year 

Hybrid 

Model 

Used 

Application 

Key 

Findings 

[1] 

Alghamdi, 

2022 

2022 

GA-ANN 

for 

reliability 

evaluation 

Power 

Systems 

Improved 

reliability 

predictions 

[2] Liu et 

al., 2007 

2007 

GA for 

ANN 

training in 

load 

forecasting 

Power 

Systems 

Enhanced 

load 

forecasting 

accuracy 

[3] Mohd 

Yusof et 

al., 2021 

2021 

GA and 

ANN for 

neural 

network 

training 

General 

Optimization 

Effective 

weight 

optimization 

[4] 

Bazargan 

et al., 2020 

2020 

Hybrid 

ANN and 

GA for 

earthquake 

impact 

Infrastructure 

Management 

Better 

predictions 

under 

uncertainty 



 

 

 

6. Prospects for Computational Intelligence in the Future  

 

CI models are always changing due to the exponential increase of data and computational 

power. The use of neuromorphic hardware for energy-efficient neural network computation 

and the fusion of quantum computing with evolutionary techniques are examples of emerging 

trends. 

  

6.1 Quantum Evolutionary Computing  

Evolutionary algorithms could be significantly accelerated by quantum computing. Scientists 

are investigating how to use quantum states to evolve more complex systems faster.  

 

6.2 Neuromorphic Approaches to ANNs  

Using specialized hardware that uses a lot less energy than conventional processors, 

neuromorphic computing imitates the neuronal organization of the brain. Large-scale ANN 

deployment in resource-constrained environments, such mobile devices, is especially 

promising for this method. 

  

Table 4: Performance Metrics for Evaluating Hybrid Models 

Metric Description Importance 



 

 

Accuracy 

Proportion of correctly predicted 

instances 

Measures overall effectiveness 

of model 

Precision 

Proportion of true positive results 

to all positive predictions 

Indicates reliability of positive 

predictions 

Recall 

Proportion of true positive results 

to actual positives 

Measures the model's ability to 

identify relevant instances 

F1 Score 

Harmonic mean of precision and 

recall 

Balances both precision and 

recall 

 

7. Conclusion 

The investigation of natural intelligence-inspired computational intelligence models, 

especially with regard to Evolutionary Algorithms (EAs) and Artificial Neural Networks 

(ANNs), demonstrates the enormous potential of these hybrid approaches in solving 

challenging issues in a variety of disciplines. The unique capabilities of ANNs and EAs—

naturally inspired optimization techniques and data-driven learning—can be coupled to 

improve resilience, performance, and flexibility. 

The basic ideas of ANNs and EAs have been covered in this work, along with an overview of 

their designs, learning procedures, benefits, and drawbacks. By combining these two 

paradigms into hybrid models, the shortcomings of each approach are lessened while their 

combined strengths are strengthened, producing more potent and effective results. The 



 

 

suggested hybrid models show how to efficiently traverse complex solution spaces, fine-tune 

ANN topologies, and adjust weight configurations, all of which contribute to improved 

prediction performance and generalization. 

These hybrid models have several uses in fields including robotics, image processing, finance, 

and healthcare. In every instance, the combination of ANNs and EAs offers a way to solve 

practical problems that more conventional methods could find difficult to handle. For example, 

hybrid models' capacity to maximize feature selection and improve prediction accuracy in 

financial forecasting can result in better-informed investment choices. Similar to this, these 

models can greatly increase the accuracy of disease prediction in healthcare diagnostics, which 

will benefit patients. 

Hybrid models provide benefits, but it's important to recognize that they also have drawbacks, 

including higher complexity, computing needs, and parameter sensitivity. It is recommended 

that future study concentrate on creating more effective frameworks and algorithms to facilitate 

the integration process, improve the interpretability of hybrid models, and lighten the 

computing load. Developments in specialized hardware, cloud computing, and parallel 

computing may make it easier to put these ideas into practice in the real world. 

In conclusion, research into natural intelligence-inspired computational intelligence models, 

especially with regard to the combination of ANNs and EAs, represents a major advancement 

in the search for novel approaches to challenging issues. Hybrid models have the potential to 

transform many industries and raise the standard of decision-making processes as 

computational intelligence advances. Unlocking the full potential of these models and tackling 

future difficulties will need ongoing exploration and improvement. 
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