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Abstract: 

In typical e-commerce warehouses, once customer orders are received, the purchased items 

must be retrieved from shelves and packaged for delivery. To automate and expedite this 

retrieval process, a Smart Warehouse often utilizes an Automated Retrieval System (ARS) 

to manage and schedule retrieval tasks. The efficiency of the ARS is crucial as it 

significantly affects subsequent processes. If any item in an order faces a substantial 

retrieval delay compared to others, the entire order may experience unnecessary delays. 

Traditionally, the integrity of orders has been overlooked in the parallel retrieval processes 

of multiple stackers. To address this, this paper proposes using an Order Tag to label all 

items within the same order, which is then used for scheduling retrieval tasks. The method 

for calculating these Order Tags influences the scheduling discipline of the ARS. To 

minimize average delay and ensure fairness, two new algorithms are introduced: the 

Dynamic Order-Based (DOB) Scheduling Algorithm and the Dynamic Order-Based with 

Threshold (DOBT) Scheduling Algorithm. These algorithms ensure fairness in the retrieval 

process, instilling confidence in the system's integrity. Simulation results demonstrate that 



 

 

DOB and DOBT algorithms reduce the average order retrieval delay by at least 30% 

compared to First-Come-First-Serve and other methods while alleviating backlog pressure 

on downstream operations. 

I. Introduction 

With the rise of e-commerce, many merchants have turned to public warehouses to boost 

operational efficiency and cut business costs [1][3]. In a typical warehouse setting, after 

receiving customer orders, items must be retrieved from shelves and packaged for delivery. 

Effective management of these processes is crucial to ensuring a positive customer 

experience [4][5]. 

Customer satisfaction is influenced by various factors, but "delivery delay" is a particularly 

significant one that can damage a merchant’s reputation and affect customer preferences. 

Indeed, some customers are even willing to pay more for faster delivery [6]. Although it is 

possible to implement a differentiated handling policy for high-priority customers to 

minimize delivery delays [7], the overall efficiency of warehouse operations remains 

essential for satisfying the majority of customers [8][9]. Consequently, optimizing every 

aspect of warehouse operations is necessary for improving service quality for all customers. 

Traditional warehouses rely on manual labor for item retrieval, which can be error-prone 

and dangerous, and is not scalable due to the need for a large workforce. However, 

advancements in automation technology have led to the development of new facilities 

aimed at improving warehouse operations [10][12]. One such advancement is the 

Automated Stacker, which automates the retrieval of items from shelves in a Smart 

Warehouse [13].  



 

 

To maximize storage capacity, Smart Warehouses often feature multiple parallel shelves of 

significant size and utilize a management system known as the Automated Retrieval 

System (ARS) to coordinate and schedule retrieval tasks among these parallel shelves 

[14][15]. The design of the ARS is critical for Smart Warehouses, as it directly affects 

subsequent processes. Specifically, it is important for the ARS to consider the integrality 

of customer orders during item retrieval. Without this consideration, delays may occur if 

an order cannot be packaged until all items are retrieved. 

Historically, the integrality of orders has been overlooked in the parallel retrieval processes 

of multiple stackers. To address this issue, this paper introduces the concept of an "Order 

Tag" to label items belonging to the same order. These Order Tags are used to schedule 

retrieval sequences for each stacker to optimize performance. Essentially, the design of the 

Order Tags dictates the scheduling discipline of the ARS. 

This paper proposes two new scheduling algorithms based on the concept of order 

integrality: the "Dynamic Order-Based" (DOB) algorithm and the "Dynamic Order-Based 

with Threshold" (DOBT) algorithm. Through simulations, it is demonstrated that DOB and 

DOBT significantly outperform existing methods such as First-Come-First-Serve (FCFS), 

Last-Come-First-Serve (LCFS), and Shortest-Job-First (SJF). Specifically, DOB and 

DOBT reduce the average order retrieval delay by at least 30% and decrease backlog 

pressure on downstream operations. Additionally, the DOBT algorithm allows for 

adjustment of a threshold value to control the maximum delay of orders, thus balancing 

fairness among all orders. 

II. Related work 



 

 

Many studies have explored "d ways to Penh "since the performance of Smart Warehouses. 

For instance, Kung et al. investigated a warehouse system incorporating multiple stackers 

on a common rail to minimize stacker collisions and significantly improve work efficiency 

[16]. Leading research in Smart Warehouse retrieval processes focuses on optimizing 

stacker movement paths based on item storage locations to minimize overall order 

completion time [17][19]. 

Much of this research assumes that a stacker can traverse through shelves to retrieve 

multiple items in one trip. These studies often model stacker retrieval jobs as combinatorial 

optimization problems, such as the Travelling Salesman Problem (TSP) [20][27], which 

allows the application of various optimization algorithms like the HGA-VNS Algorithm 

[21], a Combination of Free Search and Amendment Circle Algorithm [22], Genetic 

Algorithms [23], Non-dominated Sequencing Genetic Algorithm with Elite Strategy [24], 

and Genetic Particle Swarm Algorithms [25]. Li et al. examined stacker utilization in the 

tobacco industry. They addressed the coordination challenges of Automated Storage and 

Retrieval Systems through engineering test cases, demonstrating the effectiveness of their 

proposed algorithm [26]. Additionally, some researchers have explored different stacker 

aisle types. Yu analyzed the ant colony system and parthenogenetic algorithms and 

proposed a parthenogenetic ant colony algorithm that significantly reduces order picking 

times and enhances warehouse efficiency [27]. 

However, as the number of orders increases, these optimization algorithms can require 

exponential time to produce acceptable results and often do not guarantee optimal solutions 

within a fixed number of iterations. Furthermore, designing an optimization algorithm to 

achieve optimal or near-optimal solutions can be complex, with parameters needing fine-



 

 

tuning. For example, inappropriate values for inspiration and heuristic factors in Ant 

Colony Algorithms can adversely affect solution speed and performance. 

Another limitation of existing algorithms is their focus on the stacker's travelling path for 

item retrieval without addressing the integral stackers across multiple parallel stackers. In 

practice, an order is only complete when all its items are retrieved, so even if some items 

are picked earlier, delays in retrieving just one item can cause unnecessary waiting times 

for the entire order. 

This study addresses the scenario where an Automated Retrieval System (ARS) is 

employed in a Smart Warehouse to manage the retrieval tasks of multiple stackers. We 

assume that each customer order may consist of various items spread across different 

shelves, with each stacker able to pick up only one item at a time but capable of parallel 

processing to complete retrieval tasks [28]. Additionally, during the wait for the last item 

to be retrieved, the remaining items of the order must occupy temporary storage at 

downstream operations, such as a packaging station, creating a backlog and increasing 

system pressure. 

Our approach focuses on how the item retrieval sequence across different orders and 

stackers impacts overall performance [29][30]. A well-designed scheduling strategy can 

reduce average retrieval delays and backlog pressures at downstream operations. For 

example, Guo et al. [31] examined order integrality in scenarios where all orders are known 

in advance, aiming to resolve stacker resource contention and optimize retrieval sequences 

using the Ant Colony Algorithm. Their experiments demonstrated about a 10% efficiency 

improvement over traditional optimization methods. However, they needed to account for 

the dynamic nature of order arrivals in real-world warehouses. 



 

 

This paper extends our previous work by introducing a label-based approach named Order 

Tag for stacker job scheduling. Our earlier research showed that Order Tag effectively 

reduces average retrieval delays under static order arrivals [32]. This paper further develops 

this approach to handle dynamic order arrivals, proposing two dynamic order-based 

scheduling algorithms: DOB and DOBT. The details of these algorithms will be discussed 

in the following sections. 

 

FIGURE 1. (a) Layout of the smart warehouse. (b) Workflow of the warehouse. 

III. WAREHOUSE ENVIRONMENT 

Typically, a Smart Warehouse incorporates multiple types of built-in facilities that must 

work in coordination to meet customer demands, as illustrated in Fig. 1. These facilities 

handle various tasks, including picking and retrieving ordered items from shelves, 

transferring these items to packaging stations, and packaging them into parcels for 

shipment. These facilities' design and layout are crucial for optimizing the efficiency of the 

shelf-to-package operations. Two main automated shelf-to-package approaches are 

commonly used, which are described as follows: 

The first approach involves using heavy-duty Automated Guided Vehicles (AGVs) to lift 

and transport entire shelf units to the pickers at the packaging stations. In this setup, pickers 



 

 

manually select the ordered items from these shelf units and package them into parcels 

[33][34]. This method, however, faces several challenges, such as avoiding AGV collisions 

[35][36]. Additionally, because the AGVs must move entire shelf units, they operate at 

lower speeds, which can limit warehouse throughput. The need to move all items on a shelf 

unit, including those not required for the current order, can lead to inefficient energy use. 

Moreover, the high maintenance costs of heavy-duty AGVs and limitations on the size of 

shelf units are notable drawbacks of this approach. 

In contrast, as depicted in Fig. 1a, the second approach involves three main sub-operations 

[37][38]. The first sub-operation uses automated stackers to retrieve the ordered items from 

shelves in the Retrieval Area and transfer them to the Transfer Area. In the second sub-

operation, a fleet of lightweight AGVs or a conveyor belt transports the items from the 

Transfer Area to the Packaging Area. The final sub-operation involves several packaging 

stations in the Packaging Area, where the items are packaged into parcels. This approach 

ensures that only the ordered items are moved, optimizing energy use and automating the 

entire picking and retrieval process. The workflow for this approach is summarized in Fig. 

1b. This paper specifically addresses the retrieval process within the Retrieval Area. 

 

Figure 2. Structure of a shelf. 



 

 

 

Figure 3. Coordinate map of the shelf. 

Referring to Fig. 2, the Retrieval Area consists of shelves that are vertically divided into 

multiple levels, each with a height of h. Horizontally, each level is divided into several 

storage units, each with a width of w, where each storage unit holds only one type of 

product. Each shelf is equipped with an automated stacker system that includes a movable 

cargo platform and a robotic picker. The cargo platform can move to any storage unit on 

the shelf, allowing the robotic picker to retrieve one item at a time and transport it back to 

the transfer station. This setup forms the basis for the mathematical model of the retrieval 

process for stackers, which will be developed in the next section. 

IV. MATHEMATICAL MODEL 

A. RETRIEVAL TIME 

Without loss of generality, let the position of a storage unit be denoted as (x, y), where xth 

and yth represent the ordinal numbers of the storage unit along the horizontal and vertical 

directions, respectively, on the shelf. We assume that the parking position of the stacker 

and the item transfer station are located at (0, 0). The stacker can move horizontally and 



 

 

vertically to access any storage unit for item retrieval. For instance, as illustrated in Fig. 3, 

if the stacker needs to retrieve an item from the storage unit at (4, 3), it must first travel 

from (0, 0) to (4, 3). Once there, the stacker retrieves the item and transports it to the 

transfer station at (0, 0). The retrieval process is completed when the item is dropped at the 

transfer station. The horizontal unit distance is \(w\), and the vertical unit distance is h. We 

also assume that the stacker's horizontal and vertical travelling speeds are vx and vy, 

respectively. As shown in (1), the travel time for the stacker to move from (0, 0) to (x, y) 

is determined by the maximum time required to traverse along both directions. 

 

FIGURE 4. Mapping of the ordered items to the jobs of stackers. 

V. Scheduling algorithms for dynamic order Arrival 

With the objective function outlined in Section III, this section explores several existing 

scheduling algorithms, including FCFS, LCFS, and SJF. We then introduce two novel 

scheduling algorithms, DOB and DOBT, designed to minimize the average delay of orders 

more effectively. 



 

 

A. FIRST-COME-FIRST-SERVE (FCFS) SCHEDULER 

FCFS is the most straightforward algorithm for mapping items to jobs. Whenever the ARS 

receives new orders, the FCFS scheduler always processes the order that arrives first. The 

advantages and disadvantages of FCFS are evident. On the positive side, FCFS has a 

meagre time complexity. Assuming the maximum number of items in an order is Lmax, the 

time complexity for scanning through the order and placing its items into the appropriate 

stacker queues is O(Lmax). If Lmax is a constant value, this scanning process has a time 

complexity of O(1)O(1)O(1). Additionally, since FCFS does not require rearrangement of 

the retrieval job sequence for new arrivals, the overall complexity of the FCFS algorithm 

remains O(1). 

The FCFS scheduler does not account for order integrality and overall delay, which makes 

it inefficient in minimizing the total delay of all orders. For instance, if an order (O_i) 

contains an item (I_{ij}) with a long delay at a specific stacker (stacker n), the presence of 

other items (I_{ik}, where k ≠ j) that could be retrieved earlier at different stackers (stacker 

n0, where n0 ≠ n) will not reduce the total delay because all items (I_{ik}) must wait for 

the last item (I_{ij}) to be retrieved before packaging can occur. A more efficient scheduler 

would address this issue by scheduling jobs from other orders (O_i0) earlier rather than 

strictly adhering to FCFS, to reduce the total delay across all orders. 

B. LAST-COME-FIRST-SERVE (LCFS) SCHEDULER 

LCFS (Last Come, First Served) is the algorithm that is opposite FCLS (First Come, Last 

Served). When a new order arrives, stackers always execute the items from this new order 

first. In other words, LCFS schedules the job retrieval sequence based on the waiting times 



 

 

of the pending orders. The longer an order has waited, the lower its priority to be serviced. 

This service discipline has an obvious disadvantage: the service to the pending items will 

be further delayed whenever a new order arrives. Consequently, LCFS is expected to 

perform poorly regarding overall delay and fairness. 

C. Shortest-Job-First (SJF) Scheduler 

When an item has a long service (retrieval) time at a stacker, the rest of the queue items 

will have to wait and experience the same large amount of waiting time. SJF is a simple 

greedy algorithm that addresses this by scheduling the shortest job in each queue (stacker) 

to be serviced first. This approach aims to minimize the overall waiting time for all queue 

items.  

When a new retrieval job arrives in a sorted queue, SJF inserts the job into the queue based 

on its retrieval time. If a binary insertion algorithm is used, the complexity of SJF is O(log 

Z), where Z is the number of existing jobs in the queue when the new job arrives. 

However, SJF does not consider the integrity of orders across multiple queues. As a result, 

even if some items of an order have been retrieved, they will still need to wait for the last 

item of the order to be retrieved before they can be packaged. Consequently, the overall 

order delay may need to be improved with SJF. 



 

 

 

FIGURE 7. Flow of dynamic order-based algorithm. 

D. Dynamic Order-Based (DOB) Scheduler 

We have developed a dynamic algorithm called the Dynamic Order-Based (DOB) 

Scheduling Algorithm, which considers both order integrality and overall delay. In our 

previous work, we demonstrated that the Order-Based scheduling algorithm significantly 

reduces the total delay of orders in scenarios with static order arrivals. This paper extends 

the algorithm to handle dynamic order arrivals for stackers. 

The key concept introduced in this algorithm is the highly adaptable Order Tag. When a 

new order arrives, it is assigned an Order Tag, which is then applied to all items within that 

order. Stackers execute the item retrieval process based on the ascending order of the items' 

Order Tags. Once an Order Tag is assigned to an item, it remains until another new order 



 

 

arrives, at which point the Order Tags may need to be recalculated according to the 

scheduler's criteria, showcasing its flexibility. 

The Order-Based Algorithm follows a systematic approach involving three main parallel 

processes, as illustrated in Fig. 7. The first process detects new orders arriving in the 

system. If a new order is detected, the second process calculates or recalculates the Order 

Tags for all items in the queues and schedules the retrieval sequences of stackers 

accordingly. Meanwhile, the stackers continue retrieving items in the third process, 

provided the job queues are not empty, ensuring a reliable method. 

The concept of the Order Tag can be implemented with various schedulers, such as FCFS 

(First Come, First Served). In FCFS, the Order Tag for each order is set to the order's arrival 

time. Once assigned, the Order Tag does not change throughout the retrieval process. 

However, this approach can lead to inefficiencies. New items with shorter retrieval times 

can only be placed in the queue after the existing items, potentially resulting in significant 

delays. Thus, the performance of FCFS can be adversely affected by earlier-arriving items 

with long retrieval times. 

To resolve the issue in FCFS, we propose that when a new order arrives, not only should 

its Order Tag be calculated, but the Order Tags of the existing items in the stackers' job 

queues may also need recalculating. Order Tag calculation/recalculation aims to prioritize 

orders that can complete retrieval jobs sooner, assigning them lower Order Tag values.  

Variables Definition 



 

 

Residue"(t) The residual retrieval time of the job being executed by the 

stacker n at time t. 

V"(t) The set of jobs waiting to be retrieved by the stacker n at 

time t. 

q"(t) The number of jobs in the job queue of stacker n at time t. 

T1 The arrival time of /th order, 01. 

RT"(i,j) The retrieval time of item I 

W The set of orders pending for Order Tag assignment 

Busy" Busy Time of stacker n 

EFT"(i,j) Expected Finish Time of item I} 

TempOT (i) Temporary Order Tag of O', a running variable 

OrderTag(i) Order Tag of O, the output of the Order Tag 

Calculation/Recalculation Procedure 

 

The Order Tag calculation/recalculation should consider the following factors: orders' 

arrival times, item retrieval times, and expected delays. Order Tag calculation/recalc 

calculation/recalculation of the service disciplines and the complexities of the respective 

schedulers. 

1) FLOW OF DOB SCHEDULINE ALGORITHM 



 

 

With reference to Fig. 7, the following is the flow of the DOB scheduling algorithm. 

Procedure 1 Initialization of the Statuses of Stacker Job Queues 

1: W <-The set of unfinished orders 

2: For n <- 0 to N 

3: Busyn  Residuen 

4: End For 

i. The scheduler continuously detects whether there is a new order arriving. 

ii. Assume that there is a new order Ol arriving at time Tl . 

iii. The items of Ol will be scanned and mapped to the corresponding stackers' job queues, 

and the scheduler updates the values of Vn (Ti) and qn(Tt ) accordingly. 

iv. The scheduler then initializes the running variables for the Order Tag 

Calculation/Recalculation Procedure as follows. 

v. The scheduler invokes the Order Tag calculation/ recalculation as follows. 

vi. Arrange each stacker to retrieve items according to the ascending order of Order Tags 

of the item. 

vii. Each stacker retrieves items according to the scheduled sequence from the Scheduler. 

viii. Every time when an item has been retrieved from stacker n, the scheduler will update 

Vn(t) and qn(t). 



 

 

Furthermore, the scheduler will also check whether the corresponding order is completed. 

If yes, then remove the completed order from the set of unfinished orders. 

ix. If qn(t) !=0, the stacker n continues the retrieval process. 

E. DYNAMIC ORDER-BASED WITH THRESHOLD (DOBT) SCHEDULER 

To address the issue of starvation, we propose an algorithm named Dynamic Order-Based 

with Threshold (DOBT) Scheduling Algorithm. The flow of DOBT is quite similar to that 

of DOB, with the critical difference being introducing a threshold limit in the Order Tag 

Recalculation Procedure. This threshold limits the maximum waiting time, ensuring a 

certain degree of fairness among orders.  

Experiments detailed in Sections VI-VII demonstrate that with an appropriate threshold 

value, DOBT effectively solves the problem of considerable maximum delays. It is also 

noteworthy that the time complexities of DOB and DOBT are identical. 

VI. SIMULATION MODELS 

We must devise an effective method for generating new orders to implement the discrete 

event simulation. This involves simulating the scenario where customers place their orders 

at varying times to the warehouse. Additionally, each order can contain one or more items, 

with each item stored in a storage unit at a specific coordinate on a particular shelf. 

A. ORDER ARRIVAL MODEL 

Assume that the system time starts at t = 0. The arrival times of these orders to the 

Automated Retrieval System (ARS) are denoted by t1, t2…. . We assume that the arrival of 

orders follows a Poisson process with an arrival rate of λ Consequently, the interval 



 

 

between two consecutive arrivals is a random variable with an exponential distribution 

having a mean of 1/λ. This can be used to generate random numbers for creating stochastic 

order arrivals. 

B. ITEM QUANTITY MODEL 

Each order from a customer may contain a varying number of items. Let the number of 

items in an order be represented by a random variable L, which follows a binomial 

distribution within the range [1, Lmax], where Lmax is the maximum number of items an 

order can have. The probability that an order contains r items is denoted by P(L = r). 

C. Shelf Location and Retrieval Time Models 

Before calculating the retrieval time of an item, we need to determine the shelf and the 

coordinate of the storage unit where the item is stored.  

To simplify the simulation, we assume that each item is randomly distributed across any of 

the N shelves, and its coordinate is evenly and randomly distributed among all storage units 

on the shelf.  

VII. SIMULATION RESULTS AND DISCUSSIONS 

In our simulation, we assume that each shelf has a fixed size of 40m by 20m. Each storage 

unit measures 2m by 1m, meaning each shelf contains 400 storage units.  

We have two main experimental settings: one with six shelves and the other with 12 

shelves. Each shelf is associated with a single stacker. The experiments are conducted with 

these two settings to compare the performances of DOB and DOBT against the FCFS, 



 

 

LCFS, and SJF algorithms. In the following subsections, we comprehensively study these 

algorithms under various order rates, running times, and thresholds. 

A. DOB vs. Other Schedulers 

In this subsection, we compare the performances of the DOB, FCFS, and SJF algorithms. 

We consider different order arrival rates in our experiments to simulate the dynamic arrival 

of orders at the warehouse. For the scenario with six stackers, the order rate ranges from 

20 to 60 orders per hour. In the scenario with 12 stackers, the order rate ranges from 40 to 

120 orders per hour. 

 

FIGURE 8. Comparison of average delays with 6 stackers. 



 

 

 

FIGURE 9. Comparison of average delays with 12 stackers. 

With 12 stackers, the order arrival rates are between 90 and 120 per hour. These different 

ranges are considered to prevent system overflow in their respective settings while also 

stress-testing the algorithms. In our simulations, we evaluate the following performance 

metrics: 

(A) Average Retrieval Delay of Orders 

(B) Maximum Retrieval Delay of Orders 

(C) Downstream Backlog Pressure 

Downstream Backlog Pressure is defined as the pressure generated by started-but-

unfinished orders waiting at the packaging stations. Once an order has begun being 

retrieved, the corresponding packaging station must wait until the last item of the order is 

retrieved before it can start packaging. All items except the previous ones remain at the 



 

 

packaging station during this waiting period, creating pressure on the packaging area's 

buffer zone. 

Our evaluation of Downstream Backlog Pressure considers two crucial aspects: order 

quantity pressure and item quantity pressure. These aspects are important as they reflect 

the number of pending orders and items in the packaging area at any given time. By 

analyzing these pressures, we can effectively evaluate the performance of different 

algorithms in terms of their impact on the packaging stations. We also consider the average 

and maximum pressure values for a comprehensive analysis. 

1) AVERAGE RETRIEVAL DELAY OF ORDERS 

Figures 8 and 9 compare the performance of DOB, FCFS, SJF, and LCFS at different order 

rates. The same phenomenon is observed despite the other number of stackers in Figures 8 

and 9. When there are only six stackers and the order rate reaches 60 orders per hour, the 

average delays for FCFS, SJF, and LCFS are 764s, 1440s, and 1514s, respectively, whereas 

DOB only requires 477 seconds, a 37% decrease compared to FCFS. Similarly, with 12 

stackers and an order rate of 120 orders per hour, the average delay for DOB also drops by 

about 39% compared to FCFS. 

It's crucial to note that the order rate, which refers to the number of orders processed per 

hour, significantly influences the performance of the algorithms, regardless of the number 

of stackers. When the order rate is relatively low (e.g., in the 6-stacker setting, when the 

order rate is less than 40 orders per hour), there is no noticeable difference in average delays 

among the algorithms. However, as the order rate decreases further, the performance of 

DOB becomes closer to that of FCFS, although DOB is always slightly better. Conversely, 



 

 

as the input pressure (order rate divided by the number of stackers) increases, the 

advantages of the DOB algorithm over FCFS become more pronounced. Moreover, the 

average delays of SJF and LCFS are consistently worse than those of FCFS and DOB. 

2) MAXIMUM RETRIEVAL DELAY OF ORDERS 

DOB outperforms FCFS in terms of average retrieval delay by prioritizing items from 

orders with smaller Order Tags and delaying those with larger Order Tags. This strategy, 

however, may be perceived as unfair, as Order Tags are determined by the items' locations 

in shelf storage from the ground point. This fairness issue underscores the need for a 

balanced algorithm that considers all orders equally. 

We also consider the Maximum Retrieval Delay in our simulation to observe how DOB 

may sacrifice this small group of orders. As shown in Figure 10, under the condition of 12 

stackers, we found that when the order rate is low, the maximum delay of the DOB 

algorithm is slightly higher than that of the FCFS algorithm. However, as the order rate 

increases, the gap between the maximum delays of FCFS and DOB widens significantly. 

When the order rate reaches 120 orders per hour, the maximum delay of DOB is 27,738 

seconds, while that of FCFS is only 2,718 seconds. Although DOB reduces the average 

delay, it significantly increases the maximum waiting time. It should be noted that the 

maximum delays of LCFS and SJF are even worse than those of DOB. 

3) DOWNSTREAM BACKLOG PRESSURE 

The retrieval process is a pivotal part of warehouse operations, as it directly impacts 

subsequent processes, such as the packaging area. The downstream backlog pressure, 

which arises from the need for order completeness, underscores the importance of a well-



 

 

organized and efficient retrieval system. Only when all items belonging to the same order 

arrive at the packaging station can they be packaged and sent to the next destination. This 

highlights the critical role of the retrieval process and the importance of the audience's role 

in warehouse management. 

 

FIGURE 10. Comparison of max delays with different order rates. 



 

 

 

FIGURE 11. Comparison of average order pressures with different order rates. 

 

FIGURE 12. Comparison of max order pressures with different order rates. 



 

 

 

FIGURE 13. Comparison of average item pressures with different order rates. 

 

FIGURE 14. Comparison of max item pressures with different order rates. 

In the following figures, the number of pending orders and pending items in the Packaging 

Area will be used to measure downstream backlog pressure. Note that we only show the 



 

 

curves for DOB, FIFO, and SJF, but not LCFS, because the downstream backlog pressures 

of LCFS are significantly more significant than the others, making it unsuitable for 

comparison in the exact figure. 

As shown in Figures 11 and 12, as the order rate increases, the average and maximum order 

pressure of FCFS become significantly higher than those of DOB. This demonstrates that 

DOB can reduce the average delay and effectively relieve downstream backlog pressure. 

When the quantity of backlogged items is used to measure backlog pressure, as shown in 

Figures 13 and 14, it more clearly reflects that DOB can effectively relieve downstream 

backlog pressure. It should also be noted that SJF consistently has the worst downstream 

backlog pressure compared to FCFS and DOB. 

B. DOBT vs. DOB and FCFS 

While the DOB algorithm improves average delay and reduces downstream backlog 

pressure, it also significantly increases maximum delay, as shown in Figure 10. This can 

lead to a poor experience for specific customers. To address this issue, we introduce a 

"threshold" to limit the waiting time for orders. When orders have waited longer than the 

threshold, the DOBT algorithm prioritizes these orders for execution. This approach also 

provides a certain degree of fairness among orders. 

To simplify notation, we use "th" to represent the threshold. For example, "the-400" means 

that we set a threshold of 400 seconds for all orders. 

 

TABLE 3. Average delays of different algorithms with different thresholds. 
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FIGURE 15. Average delays of DOBT with different threshold values. 

 

FIGURE 16. Max order delays of DOBT under different threshold values 



 

 

Table 3 records the experimental data, and Figure 15 shows the corresponding curves for 

the average delays of the algorithms. As the order rate increases, all curves exhibit an 

upward trend. The FCFS curve is consistently higher than the others, while the DOB curve 

remains at the bottom. However, the th-100 curve almost coincides with the FCFS curve 

because when the threshold is set very low, the Order Tag becomes ineffective. 

Additionally, as the threshold increases, the algorithm's performance approaches that of 

DOB. When the order rate reaches 120 orders per hour, the th-2000 curve is much closer 

to the DOB curve than the th-400 curve. The FCFS and DOB curves effectively represent 

the upper and lower bounds of the DOBT curves with different thresholds. 

 

FIGURE 17. Average order pressures of DOBT under different threshold values 



 

 

 

FIGURE 18. Max order pressures of DOBT under different threshold values 

As shown in Figure 16, to compare the maximum delay of DOBT with different threshold 

values, we set the order rate to 110 orders per hour and experimented with threshold values 

ranging from 400 to 4000 seconds. It is evident that with a small threshold value, DOBT 

effectively controls the maximum delay of orders, approaching the performance of FCFS. 

In other words, DOBT excels at reducing maximum waiting time with an appropriately set 

threshold while providing an acceptable average delay performance. 

Combining the observations from Figures 15 and 16, we can conclude that as the threshold 

value increases, the average order delay of the DOBT algorithm approaches the 

performance of the DOB algorithm. Additionally, the maximum order delay of DOBT is 

close to that of FCFS when the threshold is small. In other words, maximum order delay 

and average order delay are on opposite sides of the balance, and the threshold value is a 



 

 

parameter that can be adjusted to achieve the desired performance for an optimal 

warehouse operational plan. 

Figures 17 to 20 show the downstream backlog pressure of DOBT, FCFS, and DOB. 

Similar phenomena can be observed: the higher the threshold value for DOBT, the closer 

its performance is to DOB. Conversely, when the threshold value is small, DOBT's 

performance is closer to FCFS's. 

 

FIGURE 19. Average item pressures of DOBT under different threshold values 



 

 

 

FIGURE 20. Max item pressures of DOBT under different threshold values 

VIII. CONCLUSION 

In this paper, we have considered dynamic order arrivals and studied the corresponding 

scheduling algorithms of Automated Retrieval Systems (ARS) to manage the retrieval jobs 

of stackers in intelligent warehouses. Specifically, we proposed using "Order Tag" to 

enable ARS to consider the integrity of orders while dynamically scheduling retrieval jobs. 

Our study revealed that it is challenging to simultaneously optimize two performance 

metrics: average order retrieval delay and maximum order retrieval delay. To address this, 

we introduced a threshold to the scheduling algorithm to balance these two metrics. 

The simulation results demonstrate that the Dynamic Order-Based Threshold Algorithm 

(DOBT) can significantly reduce the maximum order delay with a minimal sacrifice in 



 

 

average order delay. Additionally, an essential contribution of our work is alleviating 

downstream backlog pressure in the Packaging Area. DOB and DOBT significantly reduce 

the number of pending orders and items compared to FCFS and other algorithms, 

enhancing overall warehouse efficiency. 
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