Enhancing Customer Experience through Chatbots: Opportunities and Challenges

Moni Sharma

Abstract


With the rise of e-commerce and online services, customer experience has become a crucial factor for businesses seeking to gain a competitive edge. Chatbots, which leverage the power of artificial intelligence (AI) and natural language processing (NLP) to engage with customers in a conversational manner, have emerged as a promising tool for improving customer experience. In this paper, we present an overview of the state-of-the-art in chatbot-based customer experience, including applications in customer service, sales, and marketing. We also discuss the challenges associated with implementing these techniques in real-world business settings, such as data privacy and security, the need for personalized interactions, and the potential for unintended biases. Additionally, we present case studies highlighting successful applications of chatbot-based customer experience, demonstrating the potential of these techniques to improve customer satisfaction, reduce response times, and increase sales revenue. Finally, we discuss future directions for research and development in this area, including the integration of new data sources, the development of more advanced NLP models, and the need for continued evaluation and optimization of chatbot-based customer experience strategies.

References


Whig, P., & Ahmad, S. N. (2014d). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.

Whig, P., Kouser, S., Velu, A., & Nadikattu, R. R. (2022). Fog-IoT-Assisted-Based Smart Agriculture Application. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 74–93). IGI Global.

A. Kumar, S. Gupta, N. Yathiraju, S. Bose Chakraborty, K. Dodda and D. Verma, "The Novel E-Way of Identifying the Face Mask and To Ware the System in the Crowd Management System," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 999-1002, doi: 10.1109/ICACITE57410.2023.10182427.

R. Pandey, S. Saha, N. Yathiraju, I. S. Abdulrahman, R. Nittala and V. Tripathi, "Integration of RFID and Image Processing for Surveillance A Based Security System," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 380-384, doi: 10.1109/ICACITE57410.2023.10182987.

M. Nagaraju Naik, A. Kaur, N. Yathiraju, S. Das and K. Pant, "Improved and Accurate Face Mask Detection Using Machine Learning in the Crowded Places," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 572-576, doi: 10.1109/ICACITE57410.2023.10182567.

N. Yathiraju, P. Raman, R. Madala, P. Surgonda Patil, A. Kumar and S. Ashwin, "Research and Innovation to Market Development: Artificial Intelligence in Business," 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 2023, pp. 1-6, doi: 10.1109/ICONSTEM56934.2023.10142715.

N. Yathiraju, A. Sankar, S. Sandhiya, S. k. R, S. K and R. S, "Cardiac Disease Prediction for Heart Monitoring using Data Mining Techniques," 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), Bengaluru, India, 2022, pp. 1282-1287, doi: 10.1109/IIHC55949.2022.10060047.

Yathiraju, N., & Mohapatra, A. (2023). "The Implications of IoT in the Modern Healthcare Industry post COVID-19," International Journal of Smart Sensor and Adhoc Network: Vol. 3: Iss. 4, Article 3. DOI: 10.47893/IJSSAN.2023.1226

Yathiraju, N., & Dash, B. (2023). Gamification Of E-Wallets With The Use Of Defi Technology-A Revisit To Digitization In Fintech. International Journal of Engineering, Science, 3(1).

Yathiraju, N., & Dash, B. (2023). BIG DATA AND METAVERSE REVOLUTIONIZING THE FUTURISTICFINTECH INDUSTRY,” International Journal of Computer Science & Information Technology(IJCSIT) Vol 15, No.1, 2023. DOI: 10.5121/ijcsit.2023.15101

Ahammad, D. S. H. ., & Yathiraju, D. . (2021). Maternity Risk Prediction Using IOT Module with Wearable Sensor and Deep Learning Based Feature Extraction and Classification Technique. Research Journal of Computer Systems and Engineering,2(1), 40:45

Whig, P., Nadikattu, R. R., & Velu, A. (2022). COVID-19 pandemic analysis using application of AI. Healthcare Monitoring and Data Analysis Using IoT: Technologies and Applications, 1.

Whig, P., Velu, A., & Bhatia, A. B. (2022). Protect Nature and Reduce the Carbon Footprint With an Application of Blockchain for IIoT. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 123–142). IGI Global.

Whig, P., Velu, A., & Naddikatu, R. R. (2022). The Economic Impact of AI-Enabled Blockchain in 6G-Based Industry. In AI and Blockchain Technology in 6G Wireless Network (pp. 205–224). Springer, Singapore.

Whig, P., Velu, A., & Nadikattu, R. R. (2022). Blockchain Platform to Resolve Security Issues in IoT and Smart Networks. In AI-Enabled Agile Internet of Things for Sustainable FinTech Ecosystems (pp. 46–65). IGI Global.

Whig, P., Velu, A., & Ready, R. (2022). Demystifying Federated Learning in Artificial Intelligence With Human-Computer Interaction. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 94–122). IGI Global.

Whig, P., Velu, A., & Sharma, P. (2022). Demystifying Federated Learning for Blockchain: A Case Study. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 143–165). IGI Global.


Refbacks

  • There are currently no refbacks.