AI-Enhanced Emotional Health Tracking in Mobile Health Platforms Using Facial and Text Analysis

Dr. Emily Chang

Abstract


This study introduces an AI-enhanced framework for tracking emotional health using facial emotion recognition and text sentiment analysis in mobile health applications. The model provides real-time feedback on users’ emotional well-being, enabling healthcare providers to deliver tailored mental health support.

References


Pillai, S. E. V. S., ElSaid, A. A., & Hu, W. C. (2022, May). A Self-Reconfigurable System for Mobile Health Text Misinformation Detection. In 2022 IEEE International Conference on Electro Information Technology (eIT) (pp. 242-247). IEEE.

Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2021). Facial Emotion and Sentiment Detection Using Convolutional Neural Network. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1), 1-13.

Mehrabian, A. (1971). Silent messages: Implicit communication of emotions and attitudes. Wadsworth Publishing Company.

Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). EmotiCon: Context-aware multimodal emotion recognition using frege's principle. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14234-14243. https://doi.org/10.1109/CVPR42600.2020.01425

Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714

Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). A blueprint for affective computing: A sourcebook and manual. Oxford University Press.

Shen, L., Wang, M., & Shen, Y. (2011). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 38(10), 14059-14065. https://doi.org/10.1016/j.eswa.2011.04.066

Tkalčič, M., De Carolis, B., De Gemmis, M., Odić, A., & Košir, A. (2016). Emotions and personality in personalized services. Springer.

Wöllmer, M., Eyben, F., Schuller, B., & Rigoll, G. (2010). A multi-modal LSTM–MRF model for robust facial expression recognition. 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3642-3645. https://doi.org/10.1109/ICASSP.2010.5495407

Zeng, Z., Pantic, M., Roisman, G. I., & Huang, T. S. (2009). A survey of affect recognition methods: Audio, visual, and spontaneous expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 39-58. https://doi.org/10.1109/TPAMI.2008.52


Refbacks

  • There are currently no refbacks.