AI-Powered Facial Emotion Recognition for Stress and Anxiety Detection in Mobile Health Systems
Abstract
References
Calvo, R. A., D'Mello, S., Gratch, J., & Kappas, A. (2015). The Oxford handbook of affective computing. Oxford University Press.
Corcoran, P., & Carr, D. (2019). AI in the detection of emotion in facial expressions. IEEE Transactions on Consumer Electronics, 65(1), 75-83. https://doi.org/10.1109/TCE.2019.2892218
Ekman, P., & Friesen, W. V. (2003). Unmasking the face: A guide to recognizing emotions from facial expressions. Malor Books.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Pillai, S. E. V. S., & Hu, W. C. (2023, May). Misinformation detection using an ensemble method with emphasis on sentiment and emotional analyses. In 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 295-300). IEEE.
Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.
Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Refbacks
- There are currently no refbacks.