AI-Powered Facial Emotion Recognition for Stress and Anxiety Detection in Mobile Health Systems

Prof. Kim Kasula

Abstract


This paper introduces an AI-powered system that detects stress and anxiety in mHealth users through facial emotion recognition. The system applies deep learning models to analyze facial expressions and provide healthcare professionals with insights into the emotional well-being of their patients.

References


Calvo, R. A., D'Mello, S., Gratch, J., & Kappas, A. (2015). The Oxford handbook of affective computing. Oxford University Press.

Corcoran, P., & Carr, D. (2019). AI in the detection of emotion in facial expressions. IEEE Transactions on Consumer Electronics, 65(1), 75-83. https://doi.org/10.1109/TCE.2019.2892218

Ekman, P., & Friesen, W. V. (2003). Unmasking the face: A guide to recognizing emotions from facial expressions. Malor Books.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Pillai, S. E. V. S., & Hu, W. C. (2023, May). Misinformation detection using an ensemble method with emphasis on sentiment and emotional analyses. In 2023 IEEE/ACIS 21st International Conference on Software Engineering Research, Management and Applications (SERA) (pp. 295-300). IEEE.

Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2022). Enhancing Early Diagnosis: Machine Learning Applications in Diabetes Prediction. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-205. DOI: doi. org/10.47363/JAICC/2022 (1), 191, 2-7.

Hinton, G., & Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735


Refbacks

  • There are currently no refbacks.