Advancements in Data Modeling for Machine Learning and AI: Techniques, Challenges, and Future Directions
Abstract
Full Text:
PDFReferences
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189-1232.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
He, H., & Wu, D. (2019). Fairness in machine learning: A survey. ACM Computing Surveys (CSUR), 52(2), 1-35.
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems (pp. 4765-4774).
Molnar, C. (2020). Interpretable machine learning. Lulu.com.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825-2830.
Refbacks
- There are currently no refbacks.