Real Time Detection, And Tracking Using Multiple AI Models And Techniques In Cybersecurity
Abstract
Full Text:
PDFReferences
Rassam, M., Bhuiyan, M. Z. A., & Xu, L. (2018). Real-time threat detection in cybersecurity: A machine learning approach. IEEE Access, 6, 28585-28593.
Sheng, W., Liu, H., & Guo, Z. (2019). Dynamic threat tracking using artificial intelligence in cyber-physical systems. Journal of Network and Computer Applications, 132, 52-62.
Liu, Y., Tan, Y., & Liu, X. (2020). Integration of machine learning and deep learning for enhanced cybersecurity. Journal of Cybersecurity and Privacy, 1(1), 23-36.
McDaniel, P., & McLaughlin, S. (2017). Machine learning in cybersecurity. IEEE Transactions on Neural Networks and Learning Systems, 28(1), 99-113.
Sgandurra, D., Garcia, F. D., & Zarras, A. (2018). Deep learning for cybersecurity: A review. IEEE Access, 6, 7650-7679.
Patcha, A., & Park, J. M. (2007). An overview of anomaly detection techniques: Existing solutions and latest technological trends. Computer Networks, 51(12), 3448-3470.
Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3(2), 2053951716679679.
Cavusoglu, H., Mishra, B., & Raghunathan, S. (2009). A model for evaluating IT security investments. Information Systems Research, 20(1), 94-121.
Chen, X., Xu, W., & Zhan, Z. H. (2019). AI-based intrusion detection: A review. IEEE Transactions on Computational Social Systems, 6(2), 299-314.
Gandomi, A., Haider, M., & Safavi, A. (2019). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.
Chaturvedi, A., & Gaur, M. S. (2017). Real-time detection of cyber-attacks: A survey. Journal of Network and Computer Applications, 79, 57-77.
Liang, H., Li, Y., Xiao, B., & Huang, M. (2019). A deep learning approach for cyber threat detection. Journal of Parallel and Distributed Computing, 132, 165-174.
Buczak, A. L., & Guven, E. (2016). A survey of data mining and machine learning methods for cybersecurity intrusion detection. IEEE Communications Surveys & Tutorials, 18(2), 1153-1176.
Acar, A., Aksu, H., & Uluagac, A. S. (2018). A survey on sensor-based threats to Internet of Things (IoT) devices and applications. IEEE Communications Surveys & Tutorials, 20(4), 2518-2543.
Kanwal, N., & Malik, A. W. (2020). Cybersecurity threat intelligence sharing in the era of Industry 4.0: A review, taxonomy, and open research challenges. Journal of Network and Computer Applications, 159, 102561.
Wang, Q., Xu, K., & Mao, Z. (2018). Data-driven cyber-physical attack and defense: A review. IEEE Transactions on Industrial Informatics, 14(1), 443-450.
Liu, C., Wang, J., Li, J., & Zhang, Q. (2018). Big data-driven cybersecurity threat detection and response: A survey. IEEE Access, 6, 33317-33330.
Ranjan, R., Shu, L., Zhang, W., & Rodrigues, J. J. P. C. (2019). An overview of blockchain for smart grids: Architectures, applications, and research challenges. IEEE Access, 7, 151406-151430.
Jouini, M., Alajlan, N., & Alrubaian, M. (2018). Cybersecurity challenges in cloud computing: A comprehensive survey. Journal of King Saud University-Computer and Information Sciences.
Hossain, M. S., Muhammad, G., Muhammad, K., Song, H., & Alelaiwi, A. (2015). Cloud-assisted industrial Internet of Things (IIoT)–enabled framework for health monitoring. Future Generation Computer Systems, 56, 684-700
Refbacks
- There are currently no refbacks.