Building a pharmacy workforce from the ground up to support the COVID-19 vaccine rollout

Niharikareddy Meenigea

Abstract


The COVID-19 pandemic has required an unprecedented surge in the pharmacy workforce to support mass vaccination hubs. This review discusses the challenges faced while training and credentialing a surge pharmacy workforce and how these challenges were overcome. The process used for training and credentialing new employees has been described and recommendations and insights have been provided based on the lessons learned at two COVID-19 mass vaccination hubs in New South Wales. Operationalising one of the largest mass vaccination hubs in Australia required efficient training and credentialing of the pharmacy workforce. This process included the use of pharmacist-extenders such as students, assistants, and those from other healthcare and non-healthcare backgrounds.

References


kolla, V. (2009). LANE DETECTION SYSTEM USING APPLICATION OF MACHINE LEARNING. Transactions on Latest Trends in Health Sector, 1(1). Retrieved from https://www.ijsdcs.com/index.php/TLHS/article/view/270

Bhatia, V., & Bhatia, G. (2013a). Room temperature based fan speed control system using pulse width modulation technique. International Journal of Computer Applications, 81(5).

Bhatia, V., & Whig, P. (2013b). A secured dual tune multi frequency based smart elevator control system. International Journal of Research in Engineering and Advanced Technology, 4(1), 1163–2319.

Whig, P., & Ahmad, S. N. (2011a). On the performance of ISFET-based device for water quality monitoring. Int’l J. of Communications, Network and System Sciences, 4(11), 709.

Whig, P., & Ahmad, S. N. (2012a). A CMOS integrated CC-ISFET device for water quality monitoring. International Journal of Computer Science Issues, 9(4), 1694–1814.

Whig, P., & Ahmad, S. N. (2012f). Performance analysis of various readout circuits for monitoring quality of water using analog integrated circuits. International Journal of Intelligent Systems and Applications, 4(11), 103.

Whig, P., & Ahmad, S. N. (2013a). A novel pseudo-PMOS integrated ISFET device for water quality monitoring. Active and Passive Electronic Components, 2013.

Whig, P., & Ahmad, S. N. (2014a). Development of economical ASIC for PCS for water quality monitoring. Journal of Circuits, Systems and Computers, 23(06), 1450079.

Whig, P., & Ahmad, S. N. (2014c). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.


Refbacks

  • There are currently no refbacks.