AI in Finance: Revolutionizing Decision-Making and Risk Management

Prakash Jain

Abstract


This abstract investigates the profound impact of Artificial Intelligence (AI) in revolutionizing decision-making and risk management within the realm of finance. AI technologies have catalyzed a transformative shift in financial institutions, offering unparalleled capabilities in data analysis, predictive modeling, and algorithmic trading. This paper delves into the multifaceted applications of AI, ranging from high-frequency trading strategies to sophisticated risk assessment models, providing institutions with enhanced tools for informed decision-making and mitigating financial risks. Moreover, it scrutinizes the challenges and opportunities presented by AI adoption in finance, emphasizing the need for robust regulatory frameworks and ethical considerations to ensure transparency, fairness, and stability within the financial ecosystem. The abstract underscores how AI continues to reshape traditional financial paradigms, empowering institutions to navigate complex market dynamics and make more accurate, data-driven decisions while navigating evolving regulatory landscapes.

References


Mallikarjunaradhya, V., & Pothukuchi, A. S. (2015). The Future of SAAS Startups: How AI Accelerates Market Research and Product Development. Asian Journal of Multidisciplinary Research & Review, 2(4), 444-450.

Chaitanya Krishna Suryadevara. (2020). GENERATING FREE IMAGES WITH OPENAI’S GENERATIVE MODELS. International Journal of Innovations in Engineering Research and Technology, 7(3), 49–56. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3653

Chaitanya Krishna Suryadevara. (2020). REAL-TIME FACE MASK DETECTION WITH COMPUTER VISION AND DEEP LEARNING: English. International Journal of Innovations in Engineering Research and Technology, 7(12), 254–259. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3184

Chaitanya Krishna Suryadevara. (2021). ENHANCING SAFETY: FACE MASK DETECTION USING COMPUTER VISION AND DEEP LEARNING. International Journal of Innovations in Engineering Research and Technology, 8(08), 224–229. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3672

Mallikarjunaradhya, V., & Pothukuchi, A. S. (2020). Leveraging AI for Predictive Migration Planning and Automated Data Transfer: Ensuring Optimal Cloud Resource Allocation and Data Integrity. Asian Journal of Multidisciplinary Research & Review, 1(2), 77-89.

Chaitanya Krishna Suryadevara, “TOWARDS PERSONALIZED HEALTHCARE - AN INTELLIGENT MEDICATION RECOMMENDATION SYSTEM”, IEJRD - International Multidisciplinary Journal, vol. 5, no. 9, p. 16, Dec. 2020.

Suryadevara, Chaitanya Krishna, Predictive Modeling for Student Performance: Harnessing Machine Learning to Forecast Academic Marks (December 22, 2018). International Journal of Research in Engineering and Applied Sciences (IJREAS), Vol. 8 Issue 12, December-2018, Available at SSRN: https://ssrn.com/abstract=4591990

Suryadevara, Chaitanya Krishna, Unveiling Urban Mobility Patterns: A Comprehensive Analysis of Uber (December 21, 2019). International Journal of Engineering, Science and Mathematics, Vol. 8 Issue 12, December 2019, Available at SSRN: https://ssrn.com/abstract=4591998

Chaitanya Krishna Suryadevara. (2019). A NEW WAY OF PREDICTING THE LOAN APPROVAL PROCESS USING ML TECHNIQUES. International Journal of Innovations in Engineering Research and Technology, 6(12), 38–48. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3654

Whig, P., & Ahmad, S. N. (2014). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 33(1/2), 611-629.


Refbacks

  • There are currently no refbacks.