Cultivating Data Quality to Strategies, Challenges, and Impact on Decision-Making
Abstract
Full Text:
PDFReferences
Redman, T. C. (1998). The impact of poor data quality on the typical enterprise.
Communications of the ACM, 41(2), 79-82.
Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data
consumers. Journal of Management Information Systems, 12(4), 5-33.
Batini, C., & Scannapieco, M. (2016). Data quality: Concepts, methodologies and
techniques. Springer.
Wand, Y., & Wang, R. Y. (1996). Anchoring data quality dimensions in ontological
foundations. Communications of the ACM, 39(11), 86-95.
Lee, Y. W., Strong, D. M., Kahn, B. K., & Wang, R. Y. (2002). AIMQ: A methodology
for information quality assessment. Information & Management, 40(2), 133-146.
Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment.
Communications of the ACM, 45(4), 211-218.
English, L. P. (1999). Improving data warehouse and business information quality:
Methods for reducing costs and increasing profits. Wiley.
Wang, R. Y. (1998). A product perspective on total data quality management.
Communications of the ACM, 41(2), 58-65.
Loshin, D. (2013). Master data management. Morgan Kaufmann.
Inmon, W. H., & Linstedt, D. (2014). The Data Warehouse ETL Toolkit: Practical
Techniques for Extracting, Cleaning, Conforming, and Delivering Data. Wiley
Refbacks
- There are currently no refbacks.