Autonomous Supply Chain Operations with AI and Robotics

Prof Rai Raj

Abstract


The future of supply chain operations lies in automation. This chapter explores the integration of AI and robotics to create autonomous supply chain systems. It covers the use of AI for decision-making and optimization, as well as the deployment of robotic systems for tasks such as picking, packing, and transportation. Case studies of companies that have successfully implemented autonomous supply chain operations are included.


References


Dubey, R., Gunasekaran, A., Childe, S. J., Blome, C., & Papadopoulos, T. (2019). Big data and predictive analytics and manufacturing performance: Integrating institutional theory, resource-based view and big data culture. British Journal of Management, 30(2), 341-361. https://doi.org/10.1111/1467-8551.12355

Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 31(10), 775-788. https://doi.org/10.1080/09537287.2020.1768450

Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338-345. https://doi.org/10.1016/j.jbusres.2016.08.007

Queiroz, M. M., & Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. International Journal of Information Management, 46, 70-82. https://doi.org/10.1016/j.ijinfomgt.2018.11.021

Wang, G., Gunasekaran, A., Ngai, E. W., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98-110. https://doi.org/10.1016/j.ijpe.2016.03.014

Koushik, P. Data-Driven Simulation: Integrating Sensitivity Analysis into Supply Chain Optimization, International Journal of Science and Research (IJSR), Volume 13 Issue 5, May 2024

Koushik, P. OPTIMIZING FULFILLMENT: A MULTI-FACETED APPROACH INTEGRATING LINEAR PROGRAMMING, BRANCH AND BOUND TECHNIQUES, AND REINFORCEMENT LEARNING. International Journal of Computer Engineering and Technology (IJCET) Volume 15, Issue 3, May-June 2024, pp. 134-149


Refbacks

  • There are currently no refbacks.