Exploring the Potential of Deep Learning Techniques for Predictive Maintenance in Manufacturing

Raj Jain

Abstract


Predictive maintenance is a critical component of modern manufacturing operations, enabling companies to maximize equipment uptime, reduce maintenance costs, and improve overall efficiency. In recent years, deep learning techniques have emerged as a powerful tool for predictive maintenance, leveraging the power of artificial neural networks to analyze vast amounts of sensor data and identify patterns indicative of impending equipment failure. In this paper, we present a comprehensive overview of the state-of-the-art in deep learning techniques for predictive maintenance, including convolutional neural networks, recurrent neural networks, and generative adversarial networks. We also explore the challenges and opportunities associated with implementing these techniques in manufacturing settings, including data acquisition and processing, model development and training, and deployment and integration with existing maintenance workflows. Finally, we present case studies highlighting successful applications of deep learning-based predictive maintenance in real-world manufacturing scenarios, demonstrating the potential of these techniques to transform the way companies approach maintenance and asset management.

References


Whig, P., & Ahmad, S. N. (2014d). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.

Whig, P., Kouser, S., Velu, A., & Nadikattu, R. R. (2022). Fog-IoT-Assisted-Based Smart Agriculture Application. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 74–93). IGI Global.

Whig, P., Nadikattu, R. R., & Velu, A. (2022). COVID-19 pandemic analysis using application of AI. Healthcare Monitoring and Data Analysis Using IoT: Technologies and Applications, 1.

Whig, P., Velu, A., & Bhatia, A. B. (2022). Protect Nature and Reduce the Carbon Footprint With an Application of Blockchain for IIoT. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 123–142). IGI Global.

Whig, P., Velu, A., & Naddikatu, R. R. (2022). The Economic Impact of AI-Enabled Blockchain in 6G-Based Industry. In AI and Blockchain Technology in 6G Wireless Network (pp. 205–224). Springer, Singapore.

Whig, P., Velu, A., & Nadikattu, R. R. (2022). Blockchain Platform to Resolve Security Issues in IoT and Smart Networks. In AI-Enabled Agile Internet of Things for Sustainable FinTech Ecosystems (pp. 46–65). IGI Global.

Whig, P., Velu, A., & Ready, R. (2022). Demystifying Federated Learning in Artificial Intelligence With Human-Computer Interaction. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 94–122). IGI Global.

Whig, P., Velu, A., & Sharma, P. (2022). Demystifying Federated Learning for Blockchain: A Case Study. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 143–165). IGI Global.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 International Journal of Sustainable Development in Computing Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A Double-Blind Peer Reviewed Journal