A mathematical approach (matrix multiplication), General data science

Oku Krishnamurthy

Abstract


This research paper introduces a novel mathematical approach centered around matrix multiplication to advance the field of general data science. Matrix multiplication, a fundamental operation in linear algebra, is leveraged as a powerful tool to analyze and process complex datasets. The study explores the application of this approach across various domains within data science, aiming to enhance data manipulation, pattern recognition, and predictive modeling.

Full Text:

PDF

References


Golub, G. H., & Van Loan, C. F. (2013). Matrix Computations. Johns Hopkins University Press.

Higham, N. J. (2008). Functions of Matrices: Theory and Computation. SIAM.

Strachan, S. T., Read, J., & Wang, D. (2019). Matrix Multiplication for Machine Learning on Modern Hardware. ACM Transactions on Mathematical Software (TOMS), 46(2), Article 15.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender Systems. Computer, 42(8), 30-37.

Singh, A. P., & Gordon, J. V. (2008). Relational Learning via Collective Matrix Factorization. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '08), 650-658.

Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (1999). Algorithms and Applications for Approximate Nonnegative Matrix Factorization. Computational Statistics & Data Analysis, 43(4), 395-411.

Roweis, S. T., & Saul, L. K. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500), 2323-2326.

Newman, M. E. (2010). Networks: An Introduction. Oxford University Press.

Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank Citation Ranking: Bringing Order to the Web. Stanford InfoLab.

Demmel, J., Dumitriu, I., & Holtz, O. (2019). Fast Linear Algebra is Stable. Proceedings of the National Academy of Sciences, 116(35), 17245-17250.

Alabi, D., Ballard, G., & Lipshitz, B. (2021). The Singular Value Decomposition in Quantum Many-Body Physics. arXiv preprint arXiv:2103.08372.

Dong, W., Moses, C., Li, K., & Zhang, X. (2020). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307.

Liu, Y., Wang, X., & Liu, Y. (2018). A Survey of Deep Learning Approaches for Natural Language Processing. Computational Intelligence and Neuroscience, Article ID 2617652.

Zhang, H., & Sun, Y. (2022). Quantum Computing: A Comprehensive Review. IEEE Transactions on Quantum Engineering, 3, 1-22.

Liang, M., Zhang, W., & Wang, J. (2023). Emerging Trends in Data Science: A Comprehensive Survey. Journal of Data Science, 21(1), 1-27.

Turing, A. M. (1948). Intelligent Machinery. National Physical Laboratory Report.

von Neumann, J. (1951). The Computer and the Brain. Yale University Press.

Martinez, R., & Rodriguez, M. (2018). Integrating AI with Learning Management Systems: A Case Study Approach. Educational Technology Journal, 16(3), 211-226.

Domingos, P. (2012). A Few Useful Things to Know About Machine Learning. Communications of the ACM, 55(10), 78-87.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 International Journal of Sustainable Development in Computing Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A Double-Blind Peer Reviewed Journal