IoT-Enabled Smart Wearables for Chronic Disease Management

Prof. Kin Kalesh

Abstract


This study explores the role of IoT-enabled wearable devices in managing chronic diseases such as diabetes and hypertension. By continuously monitoring vital signs and health metrics, these devices provide real-time data to both patients and healthcare providers. Our findings indicate significant improvements in patient adherence to treatment regimens and a reduction in hospital visits. This research highlights the potential of IoT to empower patients and enhance disease management through proactive healthcare interventions.


References


Ahn, H., & Lee, J. (2023). IoT-enabled wearables for chronic disease management. Journal of Healthcare Informatics Research, 7(2), 150-165. https://doi.org/10.1007/s41666-023-00032-5

Brown, T., & Smith, R. (2022). The impact of IoT on remote patient monitoring: A review. International Journal of Medical Informatics, 168, 104-112. https://doi.org/10.1016/j.ijmedinf.2022.104112

Chen, M., & Zhang, J. (2024). Smart hospitals: Integrating IoT for enhanced patient care. Journal of Health Management, 25(2), 215-229. https://doi.org/10.1177/09720634211013984

Yadav, H. (2023). Securing and Enhancing Efficiency in IoT for Healthcare Through Sensor Networks and Data Management. International Journal of Sustainable Development Through AI, ML and IoT, 2(2), 1-9.

Yadav, H. (2023). Enhanced Security, Privacy, and Data Integrity in IoT Through Blockchain Integration. International Journal of Sustainable Development in Computing Science, 5(4), 1-10.

Yadav, H. (2023). Advancements in LoRaWAN Technology: Scalability and Energy Efficiency for IoT Applications. International Numeric Journal of Machine Learning and Robots, 7(7), 1-9.

Yadav, H. (2024). Scalable ETL pipelines for aggregating and manipulating IoT data for customer analytics and machine learning. International Journal of Creative Research In Computer Technology and Design, 6(6), 1-30.

Yadav, H. (2024). Anomaly detection using Machine Learning for temperature/humidity/leak detection IoT. International Transactions in Artificial Intelligence, 8(8), 1-18.

Yadav, H. (2024). Structuring SQL/NoSQL databases for IoT data. International Journal of Machine Learning and Artificial Intelligence, 5(5), 1-12.

Nadella, G. S., Meduri, S. S., Gonaygunta, H., & Podicheti, S. (2023). Understanding the Role of Social Influence on Consumer Trust in Adopting AI Tools. International Journal of Sustainable Development in Computing Science, 5(2), 1-18.

Nadella, G. S., Satish, S., Meduri, K., & Meduri, S. S. (2023). A Systematic Literature Review of Advancements, Challenges and Future Directions of AI And ML in Healthcare. International Journal of Machine Learning for Sustainable Development, 5(3), 115-130.

Pillai, S. E. V. S., & Polimetla, K. (2024, February). Privacy-Preserving Network Traffic Analysis Using Homomorphic Encryption. In 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-6). IEEE.

Pillai, S. E. V. S., & Polimetla, K. (2024, February). Enhancing Network Privacy through Secure Multi-Party Computation in Cloud Environments. In 2024 International Conference on Integrated Circuits and Communication Systems (ICICACS) (pp. 1-6). IEEE.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 International Journal of Sustainable Development in Computing Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A Double-Blind Peer Reviewed Journal