Continuous Data Validation Using AI ML-Driven Statistical Profiling in Bronze–Silver–Gold Architecture
Abstract
Full Text:
PDFReferences
Batini, C., & Scannapieco, M. (2016). Data and information quality: Dimensions, principles and techniques. Springer.
Bernstein, P. A., & Rahm, E. (2011). Data integration in the cloud. ACM Data Engineering Bulletin, 34(1), 3–13.
Bishop, C. M. (2006). Pattern recognition and machine learning. Springer.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1–58.
Doan, A., Halevy, A., & Ives, Z. (2012). Principles of data integration. Morgan Kaufmann.
Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering, 19(1), 1–16.
Hellerstein, J. M. (2008). Quantitative data cleaning for large databases. United Nations Economic Commission for Europe.
Kimball, R., & Ross, M. (2013). The data warehouse toolkit: The definitive guide to dimensional modeling. Wiley.Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. Proceedings of VLDB.
Rahm, E., & Do, H. (2000). Data cleaning: Problems and current approaches. IEEE Data Engineering Bulletin, 23(4), 3–13.
Redman, T. C. (2013). Data driven: Profiting from your most important business asset. Harvard Business Review Press.
Siau, K. (2018). Artificial intelligence, business transformation, and the economy. Journal of Database Management, 29(1), 1–8.
Zhu, Q., & Chen, H. (2016). Semantic based ETL process design for data warehouses. Expert Systems with Applications, 55, 56–67.
Refbacks
- There are currently no refbacks.