Real-Time Emotion Detection for Stress Monitoring in Mobile Health Using Facial and Voice Cues

Dr. Pankaj Kapoor

Abstract


This study develops a real-time AI model that integrates facial emotion recognition with voice sentiment analysis for stress detection in mHealth applications. By analyzing facial and vocal cues, the system detects early signs of emotional distress, contributing to timely healthcare interventions.

References


Ko, B. C. (2018). A brief review of facial emotion recognition based on visual information. Sensors, 18(2), 401. https://doi.org/10.3390/s18020401

Pillai, S. E. V. S., ElSaid, A. A., & Hu, W. C. (2022, May). A Self-Reconfigurable System for Mobile Health Text Misinformation Detection. In 2022 IEEE International Conference on Electro Information Technology (eIT) (pp. 242-247). IEEE.

Kalla, D., Smith, N., Samaah, F., & Polimetla, K. (2021). Facial Emotion and Sentiment Detection Using Convolutional Neural Network. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1), 1-13.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

Liu, B., & Zhang, L. (2012). A survey of opinion mining and sentiment analysis. Mining Text Data, 415-463. https://doi.org/10.1007/978-1-4614-3223-4_13

McDuff, D., & El Kaliouby, R. (2015). Applications of automatic facial coding in media measurement. IEEE Transactions on Affective Computing, 6(2), 190-202. https://doi.org/10.1109/TAFFC.2015.2445334

Mehrabian, A. (1971). Silent messages: Implicit communication of emotions and attitudes. Wadsworth Publishing Company.

Mittal, T., Bhattacharya, U., Chandra, R., Bera, A., & Manocha, D. (2020). EmotiCon: Context-aware multimodal emotion recognition using frege's principle. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14234-14243. https://doi.org/10.1109/CVPR42600.2020.01425

Poria, S., Cambria, E., Bajpai, R., & Hussain, A. (2017). A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 37, 98-125. https://doi.org/10.1016/j.inffus.2017.02.003

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714

Scherer, K. R., Bänziger, T., & Roesch, E. B. (2010). A blueprint for affective computing: A sourcebook and manual. Oxford University Press.

Shen, L., Wang, M., & Shen, Y. (2011). Sentiment classification of online reviews to travel destinations by supervised machine learning approaches. Expert Systems with Applications, 38(10), 14059-14065. https://doi.org/10.1016/j.eswa.2011.04.066


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 International Journal of Sustainable Development in Computing Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

A Double-Blind Peer Reviewed Journal