Enhancing Personalized Healthcare through Machine Learning: Opportunities and Challenges

Amrit Kumar

Abstract


Personalized healthcare, which tailors medical treatments to individual patients based on their unique characteristics, has the potential to improve patient outcomes and reduce healthcare costs. Machine learning (ML) techniques have emerged as a powerful tool for enabling personalized healthcare, leveraging the power of algorithms to analyze vast amounts of patient data and generate personalized recommendations for diagnosis, treatment, and prevention. In this paper, we present an overview of the state-of-the-art in ML-based personalized healthcare, including applications in disease diagnosis, drug discovery, and patient monitoring. We also discuss the challenges associated with implementing these techniques in real-world healthcare settings, such as data privacy and security, data quality, and ethical considerations. Additionally, we present case studies highlighting successful applications of ML-based personalized healthcare, demonstrating the potential of these techniques to improve patient outcomes and reduce healthcare costs. Finally, we discuss future directions for research and development in this area, including the incorporation of new data sources and the integration of explainable AI techniques to improve transparency and interpretability.

References


Whig, P., & Ahmad, S. N. (2014d). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.

Whig, P., Kouser, S., Velu, A., & Nadikattu, R. R. (2022). Fog-IoT-Assisted-Based Smart Agriculture Application. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 74–93). IGI Global.

Whig, P., Nadikattu, R. R., & Velu, A. (2022). COVID-19 pandemic analysis using application of AI. Healthcare Monitoring and Data Analysis Using IoT: Technologies and Applications, 1.

Whig, P., Velu, A., & Bhatia, A. B. (2022). Protect Nature and Reduce the Carbon Footprint With an Application of Blockchain for IIoT. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 123–142). IGI Global.

Whig, P., Velu, A., & Naddikatu, R. R. (2022). The Economic Impact of AI-Enabled Blockchain in 6G-Based Industry. In AI and Blockchain Technology in 6G Wireless Network (pp. 205–224). Springer, Singapore.

Whig, P., Velu, A., & Nadikattu, R. R. (2022). Blockchain Platform to Resolve Security Issues in IoT and Smart Networks. In AI-Enabled Agile Internet of Things for Sustainable FinTech Ecosystems (pp. 46–65). IGI Global.

Whig, P., Velu, A., & Ready, R. (2022). Demystifying Federated Learning in Artificial Intelligence With Human-Computer Interaction. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 94–122). IGI Global.

Whig, P., Velu, A., & Sharma, P. (2022). Demystifying Federated Learning for Blockchain: A Case Study. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 143–165). IGI Global.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 International Journal of Machine Learning for Sustainable Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Impact Factor : 

JCR Impact Factor: 5.9 (2020)

JCR Impact Factor: 6.1 (2021)

JCR Impact Factor: 6.7 (2022)

JCR Impact Factor: 7.6 (2023)

JCR Impact Factor: 8.6 (2024)

JCR Impact Factor: Under Evaluation (2025)

A Double-Blind Peer-Reviewed Refereed Journal