Machine Learning Algorithms: A Comparative Study and Performance Evaluation

Privartan Kapoor

Abstract


Machine learning algorithms have witnessed significant advancements in recent years, enabling their widespread adoption across diverse domains. This research paper presents a comprehensive comparative study and performance evaluation of various machine learning algorithms. We explore the fundamental categories of machine learning, including supervised, unsupervised, and reinforcement learning, and analyze the strengths and weaknesses of representative algorithms within each category. Leveraging benchmark datasets and real-world applications, we conduct rigorous performance evaluations to assess the accuracy, efficiency, and scalability of the algorithms. Through extensive experimentation and statistical analysis, we identify the most suitable algorithms for different types of tasks and datasets. Moreover, we highlight the impact of hyperparameter tuning, feature engineering, and data preprocessing on algorithm performance. The findings of this research contribute to a deeper understanding of machine learning algorithms, aiding practitioners and researchers in making informed choices when selecting the most appropriate algorithm for their specific applications.

References


N. Yathiraju, P. Raman, R. Madala, P. Surgonda Patil, A. Kumar and S. Ashwin, "Research and Innovation to Market Development: Artificial Intelligence in Business," 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 2023, pp. 1-6, doi: 10.1109/ICONSTEM56934.2023.10142715.

Jupalle, H., Kouser, S., Bhatia, A. B., Alam, N., Nadikattu, R. R., & Whig, P. (2022). Automation of human behaviors and its prediction using machine learning. Microsystem Technologies, 1–9.

Khera, Y., Whig, P., & Velu, A. (2021a). efficient effective and secured electronic billing system using AI. Vivekananda Journal of Research, 10, 53–60.

N. Yathiraju, A. Sankar, S. Sandhiya, S. k. R, S. K and R. S, "Cardiac Disease Prediction for Heart Monitoring using Data Mining Techniques," 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), Bengaluru, India, 2022, pp. 1282-1287, doi: 10.1109/IIHC55949.2022.10060047.

Yathiraju, N., & Mohapatra, A. (2023). "The Implications of IoT in the Modern Healthcare Industry post COVID-19," International Journal of Smart Sensor and Adhoc Network: Vol. 3: Iss. 4, Article 3. DOI: 10.47893/IJSSAN.2023.1226

Yathiraju, N., & Dash, B. (2023). Gamification Of E-Wallets With The Use Of Defi Technology-A Revisit To Digitization In Fintech. International Journal of Engineering, Science, 3(1).

Lahade, S. v, & Hirekhan, S. R. (2015a). Intelligent and adaptive traffic light controller (IA-TLC) using FPGA. 2015 International Conference on Industrial Instrumentation and Control (ICIC), 618–623.

Mamza, E. S. (2021). Use of AIOT in Health System. International Journal of Sustainable Development in Computing Science, 3(4), 21–30.

Nadikattu, R. R. (2014a). Content analysis of American & Indian Comics on Instagram using Machine learning. International Journal of Creative Research Thoughts (IJCRT), ISSN, 2320–2882.

Yathiraju, N., & Dash, B. (2023). BIG DATA AND METAVERSE REVOLUTIONIZING THE FUTURISTICFINTECH INDUSTRY,” International Journal of Computer Science & Information Technology(IJCSIT) Vol 15, No.1, 2023. DOI: 10.5121/ijcsit.2023.15101

Ahammad, D. S. H. ., & Yathiraju, D. . (2021). Maternity Risk Prediction Using IOT Module with Wearable Sensor and Deep Learning Based Feature Extraction and Classification Technique. Research Journal of Computer Systems and Engineering,2(1), 40:45

Arun Velu, P. W. (2021a). Impact of Covid Vaccination on the Globe using data analytics. International Journal of Sustainable Development in Computing Science, 3(2).

Bhatia, V., & Bhatia, G. (2013a). Room temperature based fan speed control system using pulse width modulation technique. International Journal of Computer Applications, 81(5).

Bhatia, V., & Whig, P. (2013b). A secured dual tune multi frequency based smart elevator control system. International Journal of Research in Engineering and Advanced Technology, 4(1), 1163–2319.

Chopra, G., & WHIG, P. (2022a). A clustering approach based on support vectors. International Journal of Machine Learning for Sustainable Development, 4(1), 21–30.

Chopra, G., & Whig, P. (2022a). Energy Efficient Scheduling for Internet of Vehicles. International Journal of Sustainable Development in Computing Science, 4(1).

Chopra, G., & WHIG, P. (2022b). Using machine learning algorithms classified depressed patients and normal people. International Journal of Machine Learning for Sustainable Development, 4(1), 31–40.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 International Journal of Machine Learning for Sustainable Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Impact Factor : 

JCR Impact Factor: 5.9 (2020)

JCR Impact Factor: 6.1 (2021)

JCR Impact Factor: 6.7 (2022)

JCR Impact Factor: 7.6 (2023)

JCR Impact Factor: 8.6 (2024)

JCR Impact Factor: Under Evaluation (2025)

A Double-Blind Peer-Reviewed Refereed Journal