Advances in Cancer Detection using Machine Learning: A Comprehensive Review and Future Prospects

Prem latta

Abstract


Cancer remains a leading cause of mortality worldwide, making early detection crucial for improving patient outcomes and survival rates. Machine learning (ML) techniques have shown promising potential in revolutionizing cancer detection through their ability to analyze complex and high-dimensional data. This research paper presents a comprehensive review of the recent advances in cancer detection using machine learning, covering a wide range of cancer types and imaging modalities. We explore the application of various ML algorithms, including deep learning, support vector machines, and random forests, in analyzing medical imaging, genomics, and biomarker data to identify cancerous patterns with high accuracy and efficiency. Additionally, we discuss the challenges and limitations associated with ML-based cancer detection, such as the need for large and diverse datasets, interpretability of model outputs, and generalizability across different populations. Furthermore, we highlight the potential future prospects of integrating machine learning with emerging technologies like liquid biopsies, wearable devices, and multi-omics data to enhance cancer detection sensitivity and specificity. Through this review, we aim to provide a comprehensive overview of the state-of-the-art in cancer detection using machine learning, fostering collaboration and innovation towards more effective and personalized cancer screening and diagnosis.

References


Lahade, S. v, & Hirekhan, S. R. (2015a). Intelligent and adaptive traffic light controller (IA-TLC) using FPGA. 2015 International Conference on Industrial Instrumentation and Control (ICIC), 618–623.

A. Kumar, S. Gupta, N. Yathiraju, S. Bose Chakraborty, K. Dodda and D. Verma, "The Novel E-Way of Identifying the Face Mask and To Ware the System in the Crowd Management System," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 999-1002, doi: 10.1109/ICACITE57410.2023.10182427.

R. Pandey, S. Saha, N. Yathiraju, I. S. Abdulrahman, R. Nittala and V. Tripathi, "Integration of RFID and Image Processing for Surveillance A Based Security System," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 380-384, doi: 10.1109/ICACITE57410.2023.10182987.

M. Nagaraju Naik, A. Kaur, N. Yathiraju, S. Das and K. Pant, "Improved and Accurate Face Mask Detection Using Machine Learning in the Crowded Places," 2023 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2023, pp. 572-576, doi: 10.1109/ICACITE57410.2023.10182567.

Mamza, E. S. (2021). Use of AIOT in Health System. International Journal of Sustainable Development in Computing Science, 3(4), 21–30.

Nadikattu, R. R. (2014a). Content analysis of American & Indian Comics on Instagram using Machine learning. International Journal of Creative Research Thoughts (IJCRT), ISSN, 2320–2882.

N. Yathiraju, P. Raman, R. Madala, P. Surgonda Patil, A. Kumar and S. Ashwin, "Research and Innovation to Market Development: Artificial Intelligence in Business," 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 2023, pp. 1-6, doi: 10.1109/ICONSTEM56934.2023.10142715.

N. Yathiraju, A. Sankar, S. Sandhiya, S. k. R, S. K and R. S, "Cardiac Disease Prediction for Heart Monitoring using Data Mining Techniques," 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC), Bengaluru, India, 2022, pp. 1282-1287, doi: 10.1109/IIHC55949.2022.10060047.

Yathiraju, N., & Mohapatra, A. (2023). "The Implications of IoT in the Modern Healthcare Industry post COVID-19," International Journal of Smart Sensor and Adhoc Network: Vol. 3: Iss. 4, Article 3. DOI: 10.47893/IJSSAN.2023.1226

Yathiraju, N., & Dash, B. (2023). Gamification Of E-Wallets With The Use Of Defi Technology-A Revisit To Digitization In Fintech. International Journal of Engineering, Science, 3(1).

Yathiraju, N., & Dash, B. (2023). BIG DATA AND METAVERSE REVOLUTIONIZING THE FUTURISTICFINTECH INDUSTRY,” International Journal of Computer Science & Information Technology(IJCSIT) Vol 15, No.1, 2023. DOI: 10.5121/ijcsit.2023.15101

Ahammad, D. S. H. ., & Yathiraju, D. . (2021). Maternity Risk Prediction Using IOT Module with Wearable Sensor and Deep Learning Based Feature Extraction and Classification Technique. Research Journal of Computer Systems and Engineering,2(1), 40:45

Nadikattu, R. R., Mohammad, S. M., & Whig, P. (2020a). Novel economical social distancing smart device for covid-19. International Journal of Electrical Engineering and Technology (IJEET).

Rupani, A., Whig, P., Sujediya, G., & Vyas, P. (2017a). A robust technique for image processing based on interfacing of Raspberry-Pi and FPGA using IoT. 2017 International Conference on Computer, Communications and Electronics (Comptelix), 350–353.

Sharma, A., Kumar, A., & Whig, P. (2015a). On the performance of CDTA based novel analog inverse low pass filter using 0.35 µm CMOS parameter. International Journal of Science, Technology & Management, 4(1), 594–601.

Tomar, U., Chakroborty, N., Sharma, H., & Whig, P. (2021). AI based Smart Agricuture System. Transactions on Latest Trends in Artificial Intelligence, 2(2).

Velu, A., & Whig, P. (2021a). Protect Personal Privacy And Wasting Time Using Nlp: A Comparative Approach Using Ai. Vivekananda Journal of Research, 10, 42–52.

Whig, P. (2019a). A Novel Multi-Center and Threshold Ternary Pattern. International Journal of Machine Learning for Sustainable Development, 1(2), 1–10.

Whig, P. (2019d). Exploration of Viral Diseases mortality risk using machine learning. International Journal of Machine Learning for Sustainable Development, 1(1), 11–20.

WHIG, P. (2022). More on Convolution Neural Network CNN. International Journal of Sustainable Development in Computing Science, 4(1).

Whig, P., & Ahmad, S. N. (2011a). On the performance of ISFET-based device for water quality monitoring. Int’l J. of Communications, Network and System Sciences, 4(11), 709.

Whig, P., & Ahmad, S. N. (2012a). A CMOS integrated CC-ISFET device for water quality monitoring. International Journal of Computer Science Issues, 9(4), 1694–1814.

Whig, P., & Ahmad, S. N. (2012f). Performance analysis of various readout circuits for monitoring quality of water using analog integrated circuits. International Journal of Intelligent Systems and Applications, 4(11), 103.

Whig, P., & Ahmad, S. N. (2013a). A novel pseudo-PMOS integrated ISFET device for water quality monitoring. Active and Passive Electronic Components, 2013.

Whig, P., & Ahmad, S. N. (2014a). Development of economical ASIC for PCS for water quality monitoring. Journal of Circuits, Systems and Computers, 23(06), 1450079.

Whig, P., & Ahmad, S. N. (2014c). Simulation of linear dynamic macro model of photo catalytic sensor in SPICE. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering.

Whig, P., Kouser, S., Velu, A., & Nadikattu, R. R. (2022). Fog-IoT-Assisted-Based Smart Agriculture Application. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 74–93). IGI Global.

Whig, P., Nadikattu, R. R., & Velu, A. (2022). COVID-19 pandemic analysis using application of AI. Healthcare Monitoring and Data Analysis Using IoT: Technologies and Applications, 1.

Whig, P., Velu, A., & Bhatia, A. B. (2022). Protect Nature and Reduce the Carbon Footprint With an Application of Blockchain for IIoT. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 123–142). IGI Global.

Whig, P., Velu, A., & Naddikatu, R. R. (2022). The Economic Impact of AI-Enabled Blockchain in 6G-Based Industry. In AI and Blockchain Technology in 6G Wireless Network (pp. 205–224). Springer, Singapore.

Whig, P., Velu, A., & Nadikattu, R. R. (2022). Blockchain Platform to Resolve Security Issues in IoT and Smart Networks. In AI-Enabled Agile Internet of Things for Sustainable FinTech Ecosystems (pp. 46–65). IGI Global.

Whig, P., Velu, A., & Ready, R. (2022). Demystifying Federated Learning in Artificial Intelligence With Human-Computer Interaction. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 94–122). IGI Global.

Whig, P., Velu, A., & Sharma, P. (2022). Demystifying Federated Learning for Blockchain: A Case Study. In Demystifying Federated Learning for Blockchain and Industrial Internet of Things (pp. 143–165). IGI Global.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 International Journal of Machine Learning for Sustainable Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Impact Factor : 

JCR Impact Factor: 5.9 (2020)

JCR Impact Factor: 6.1 (2021)

JCR Impact Factor: 6.7 (2022)

JCR Impact Factor: 7.6 (2023)

JCR Impact Factor: 8.6 (2024)

JCR Impact Factor: Under Evaluation (2025)

A Double-Blind Peer-Reviewed Refereed Journal