Exploring the Frontiers of Drug Discovery with Machine Learning: An In-Depth Examination of Applications, Hurdles, and Future Trajectories
Abstract
References
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171-209.
Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.
Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123-1131.
Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219.
Sheth, J. (2017). Chatbots as AI interfaces to business. Big Data, 5(1), 6-14.
Kunduru, A. R. (2023). Industry best practices on implementing oracle cloud ERP security. International Journal of Computer Trends and Technology, 71(6), 1-8. https://doi.org/10.14445/22312803/IJCTT-V71I6P101
Kunduru, A. R. (2023). Cloud Appian BPM (Business Process Management) Usage In health care Industry. IJARCCE International Journal of Advanced Research in Computer and Communication Engineering, 12(6), 339-343. https://doi.org/10.17148/IJARCCE.2023.12658
WHIG, P. (2023). Blockchain Revolution: Innovations, Challenges, and Future Directions. International Journal of Machine Learning for Sustainable Development, 5(3), 16-25.
Whig, P., Kouser, S., Bhatia, A. B., Nadikattu, R. R., & Sharma, P. (2023). Explainable Machine Learning in Healthcare. In Explainable Machine Learning for Multimedia Based Healthcare Applications (pp. 77-98). Cham: Springer International Publishing.
Whig, P., Velu, A., Nadikattu, R. R., & Alkali, Y. J. (2023). Computational Science Role in Medical and Healthcare‐Related Approach. Handbook of Computational Sciences: A Multi and Interdisciplinary Approach, 245-272.
Kunduru, A. R. (2023). Effective usage of artificial intelligence in enterprise resource planning applications. International Journal of Computer Trends and Technology, 71(4), 73-80. https://doi.org/10.14445/22312803/IJCTT-V71I4P109
Kunduru, A. R. (2023). Recommendations to advance the cloud data analytics and chatbots by using machine learning technology. International Journal of Engineering and Scientific Research, 11(3), 8-20.
WHIG, P. (2023). A Comprehensive Review of Mask Detection Using Artificial Intelligence: Methods, Challenges, and Applications. International Journal of Sustainable Development in Computing Science, 5(2), 11-20.
Kunduru, A. R. (2023). Security concerns and solutions for enterprise cloud computing applications. Asian Journal of Research in Computer Science, 15(4), 24–33. https://doi.org/10.9734/ajrcos/2023/v15i4327
Sharma, A., Kumar, A., & Whig, P. (2015b). On the performance of CDTA based novel analog inverse low pass filter using 0.35 µm CMOS parameter. International Journal of Science, Technology & Management, 4(1), 594–601.
Tomar, U., Chakroborty, N., Sharma, H., & Whig, P. (2021). AI based Smart Agricuture System. Transactions on Latest Trends in Artificial Intelligence, 2(2).
Velu, A., & Whig, P. (2021a). Protect Personal Privacy And Wasting Time Using Nlp: A Comparative Approach Using Ai. Vivekananda Journal of Research, 10, 42–52.
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 International Journal of Machine Learning for Sustainable Development
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Impact Factor :
JCR Impact Factor: 5.9 (2020)
JCR Impact Factor: 6.1 (2021)
JCR Impact Factor: 6.7 (2022)
JCR Impact Factor: 7.6 (2023)
JCR Impact Factor: 8.6 (2024)
JCR Impact Factor: Under Evaluation (2025)
A Double-Blind Peer-Reviewed Refereed Journal