Revolutionizing Enterprise Regulation with Cloud-Based Case Management

Dr. Priyal Singh

Abstract


Cloud technology is heralding a new era in case management for regulated enterprises, offering efficient, scalable, and secure solutions. This paper conducts a comprehensive analysis, shedding light on the transformative potential of cloud-based case management. Through an in-depth exploration, it elucidates how cloud solutions streamline compliance, facilitate collaboration, and enhance data security in regulated industries. This research underscores the pivotal role of cloud technology in revolutionizing enterprise regulation and compliance.

References


Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171-209.

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.

Bates, D. W., Saria, S., Ohno-Machado, L., Shah, A., & Escobar, G. (2014). Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Affairs, 33(7), 1123-1131.

Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future—big data, machine learning, and clinical medicine. New England Journal of Medicine, 375(13), 1216-1219.

Sheth, J. (2017). Chatbots as AI interfaces to business. Big Data, 5(1), 6-14.

Kunduru, A. R. (2023). Security concerns and solutions for enterprise cloud computing applications. Asian Journal of Research in Computer Science, 15(4), 24–33. https://doi.org/10.9734/ajrcos/2023/v15i4327

Kunduru, A. R. (2023). Industry best practices on implementing oracle cloud ERP security. International Journal of Computer Trends and Technology, 71(6), 1-8. https://doi.org/10.14445/22312803/IJCTT-V71I6P101

Kunduru, A. R. (2023). Cloud Appian BPM (Business Process Management) Usage In health care Industry. IJARCCE International Journal of Advanced Research in Computer and Communication Engineering, 12(6), 339-343. https://doi.org/10.17148/IJARCCE.2023.12658

Kunduru, A. R. (2023). Effective usage of artificial intelligence in enterprise resource planning applications. International Journal of Computer Trends and Technology, 71(4), 73-80. https://doi.org/10.14445/22312803/IJCTT-V71I4P109

Kunduru, A. R. (2023). Recommendations to advance the cloud data analytics and chatbots by using machine learning technology. International Journal of Engineering and Scientific Research, 11(3), 8-20.

Kunduru, A. R., & Kandepu, R. (2023). Data archival methodology in enterprise resource planning applications (Oracle ERP, Peoplesoft). Journal of Advances in Mathematics and Computer Science, 38(9), 115–127. https://doi.org/10.9734/jamcs/2023/v38i91809

Kunduru, A. R. (2023). Artificial intelligence usage in cloud application performance improvement. Central Asian Journal of Mathematical Theory and Computer Sciences, 4(8), 42-47. https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/491

Kunduru, A. R. (2023). Artificial intelligence advantages in cloud Fintech application security. Central Asian Journal of Mathematical Theory and Computer Sciences, 4(8), 48-53. https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/492

Kunduru, A. R. (2023). Cloud BPM Application (Appian) Robotic Process Automation Capabilities. Asian Journal of Research in Computer Science, 16(3), 267–280. https://doi.org/10.9734/ajrcos/2023/v16i3361

Kunduru, A. R. (2023). Machine Learning in Drug Discovery: A Comprehensive Analysis of Applications, Challenges, and Future Directions. International Journal on Orange Technologies, 5(8), 29-37.

Arjun Reddy Kunduru. (2023). From Data Entry to Intelligence: Artificial Intelligence’s Impact on Financial System Workflows. International Journal on Orange Technologies, 5(8), 38-45. Retrieved from https://journals.researchparks.org/index.php/IJOT/article/view/4727

Arjun Reddy Kunduru. (2023). The Inevitability of Cloud-Based Case Management for Regulated Enterprises. International Journal of Discoveries and Innovations in Applied Sciences, 3(8), 13–18. Retrieved from https://openaccessjournals.eu/index.php/ijdias/article/view/2247

Kunduru, A. R. (2023). DATA CONVERSION STRATEGIES FOR ERP IMPLEMENTATION PROJECTS. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 4(9), 1-6. Retrieved from https://cajmtcs.centralasianstudies.org/index.php/CAJMTCS/article/view/509

Arjun Reddy Kunduru. (2023). Healthcare ERP Project Success: It’s all About Avoiding Missteps. Central Asian Journal of Theoretical and Applied Science, 4(8), 130-134. Retrieved from https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1268

Kunduru, A. R. (2023). THE PERILS AND DEFENSES OF ENTERPRISE CLOUDCOMPUTING: A COMPREHENSIVE REVIEW. Central Asian Journal of Mathematical Theory and Computer Sciences, 4(9), 29-41.

Kunduru, A. R. (2023). Maximizing Business Value with Integrated IoT and Cloud ERP Systems. International Journal of Innovative Analyses and Emerging Technology, 3(9), 1-8.

Kunduru, A. R. (2023). Blockchain Technology for ERP Systems: A Review. American Journal of Engineering, Mechanics and Architecture, 1(7), 56-63.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 International Journal of Machine Learning for Sustainable Development

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Impact Factor : 

JCR Impact Factor: 5.9 (2020)

JCR Impact Factor: 6.1 (2021)

JCR Impact Factor: 6.7 (2022)

JCR Impact Factor: 7.6 (2023)

JCR Impact Factor: 8.6 (2024)

JCR Impact Factor: Under Evaluation (2025)

A Double-Blind Peer-Reviewed Refereed Journal