Machine Learning Models for Understanding Blood-Brain Barrier Integrity and Transport Mechanisms
Abstract
Full Text:
PDFReferences
Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R., & Begley, D. J. (2010). Structure and function of the blood-brain barrier. Neurobiology of Disease, 37(1), 13-25. DOI: 10.1016/j.nbd.2009.07.030
Obermeier, B., Daneman, R., & Ransohoff, R. M. (2013). Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 19(12), 1584-1596. DOI: 10.1038/nm.3407
Hoshi, Y., Uchida, Y., Tachikawa, M., Inoue, T., Ohtsuki, S., & Terasaki, T. (2019). Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. Journal of Pharmaceutical Sciences, 108(3), 2235-2245. DOI: 10.1016/j.xphs.2018.12.025
Gupta, A., Mughees, M., Khan, M. S., Akhtar, S., & Sharma, R. K. (2018). Prediction of blood-brain barrier permeability of small molecules using random forest models. Journal of Computational Biology, 25(3), 298-305. DOI: 10.1089/cmb.2017.0205
Johnson, T. W., & Abdelmessih, R. G. (2020). Explaining predictions of a random forest model to detect blood-brain barrier permeability. IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2234-2240. DOI: 10.1109/BIBM49941.2020.9313209
Smith, R. A., & Schuhmacher, A. (2021). Machine learning-based prediction models for blood-brain barrier permeability. Frontiers in Neuroscience, 15, 694791. DOI: 10.3389/fnins.2021.694791
Liu, Y., Tsai, C., Moh, M., & Lee, K. (2022). Prediction of blood-brain barrier permeability of drugs using machine learning methods. Journal of Chemical Information and Modeling, 62(1), 240-250. DOI: 10.1021/acs.jcim.1c00522
Abbott, N. J., Rönnbäck, L., & Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews Neuroscience, 7(1), 41-53. DOI: 10.1038/nrn1824
Pardridge, W. M. (2007). Blood-brain barrier delivery. Drug Discovery Today, 12(1-2), 54-61. DOI: 10.1016/j.drudis.2006.11.009
Brown, R. C., Morris, A. P., & O'Neil, R. G. (2007). Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Research, 1130(1), 17-30. DOI: 10.1016/j.brainres.2006.10.083
Suryadevara, Chaitanya Krishna, Feline vs. Canine: A Deep Dive into Image Classification of Cats and Dogs (March 09, 2021). International Research Journal of Mathematics, Engineering and IT, Available at SSRN: https://ssrn.com/abstract=4622112
Suryadevara, Chaitanya Krishna, Sparkling Insights: Automated Diamond Price Prediction Using Machine Learning (November 3, 2016). A Journal of Advances in Management IT & Social Sciences, Available at SSRN: https://ssrn.com/abstract=4622110
Suryadevara, Chaitanya Krishna, Twitter Sentiment Analysis: Exploring Public Sentiments on Social Media (August 15, 2021). International Journal of Research in Engineering and Applied Sciences, Available at SSRN: https://ssrn.com/abstract=4622111
Suryadevara, Chaitanya Krishna, Forensic Foresight: A Comparative Study of Operating System Forensics Tools (July 3, 2022). International Journal of Engineering, Science and Mathematics , Available at SSRN: https://ssrn.com/abstract=4622109
Chaitanya krishna Suryadevara. (2023). NOVEL DEVICE TO DETECT FOOD CALORIES USING MACHINE LEARNING. Open Access Repository, 10(9), 52–61. Retrieved from https://oarepo.org/index.php/oa/article/view/3546
Chaitanya Krishna Suryadevara, "Exploring the Foundations and Real-World Impact of Artificial Intelligence: Principles, Applications, and Future Directions", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.2, Issue 4, pp.22-29, November 2014, Available at :http://www.ijcrt.org/papers/IJCRT1135300.pdf
Chaitanya Krishna Suryadevara. (2022). UNVEILING COLORS: A K-MEANS APPROACH TO IMAGE-BASED COLOR CLASSIFICATION. International Journal of Innovations in Engineering Research and Technology, 9(9), 47–54. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/3577
Chaitanya Krishna Suryadevara. (2019). EMOJIFY: CRAFTING PERSONALIZED EMOJIS USING DEEP LEARNING. International Journal of Innovations in Engineering Research and Technology, 6(12), 49–56. Retrieved from https://repo.ijiert.org/index.php/ijiert/article/view/2704
Chaitanya Krishna Suryadevara, "Unleashing the Power of Big Data by Transformative Implications and Global Significance of Data-Driven Innovations in the Modern World", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.6, Issue 3, pp.548-554, July 2018, Available at :http://www.ijcrt.org/papers/IJCRT1135233.pdf
Chaitanya Krishna Suryadevara, "Transforming Business Operations: Harnessing Artificial Intelligence and Machine Learning in the Enterprise", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.5, Issue 2, pp.931-938, June 2017, Available at :http://www.ijcrt.org/papers/IJCRT1135288.pdf
Atluri, H., & Thummisetti, B. S. P. (2023). Optimizing Revenue Cycle Management in Healthcare: A Comprehensive Analysis of the Charge Navigator System. International Numeric Journal of Machine Learning and Robots, 7(7), 1-13.
Atluri, H., & Thummisetti, B. S. P. (2022). A Holistic Examination of Patient Outcomes, Healthcare Accessibility, and Technological Integration in Remote Healthcare Delivery. Transactions on Latest Trends in Health Sector, 14(14).
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 International Journal of Machine Learning for Sustainable Development
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Impact Factor :
JCR Impact Factor: 5.9 (2020)
JCR Impact Factor: 6.1 (2021)
JCR Impact Factor: 6.7 (2022)
JCR Impact Factor: 7.6 (2023)
JCR Impact Factor: 8.6 (2024)
JCR Impact Factor: Under Evaluation (2025)
A Double-Blind Peer-Reviewed Refereed Journal