Enterprise Data Lakehouse Adoption: Challenges, Solutions, and Best Practices
Abstract
Full Text:
PDFReferences
Agrawal, D., Das, S., & El Abbadi, A. (2011). Big data and cloud computing: Current state and future opportunities. Proceedings of the 14th International Conference on Extending Database Technology, 530–533.
Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., & Zaharia, M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.
Batini, C., & Scannapieco, M. (2006). Data quality: Concepts, methodologies, and techniques. Springer.
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2), 171–209.
Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business Press.
Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.
Dumbill, E. (2013). Making sense of big data. Big Data, 1(1), 1–2.
Gantz, J., & Reinsel, D. (2011). The digital universe decade: Big data and the future of storage. IDC Report.
Golfarelli, M., & Rizzi, S. (2009). Data warehouse design: Modern principles and methodologies. McGraw-Hill.
Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of big data on cloud computing: Review and open research issues. Information Systems, 47, 98–115.
Inmon, W. H. (2005). Building the data warehouse (4th ed.). Wiley.
Kimball, R., & Ross, M. (2013). The data warehouse toolkit (3rd ed.). Wiley.
Mell, P., & Grance, T. (2011). The NIST definition of cloud computing. NIST Special Publication 800–145.
Mukherjee, S., & Shaw, R. (2015). Big data—Concepts, challenges, and solutions. Machine Learning and Cybernetics, 1–7.
Nawaz, M. S., & Gomes, A. (2014). Big data architecture and Hadoop: A survey. International Journal of Computer Science Issues, 11(5), 26–33.
Rajaraman, A. (2012). More data usually beats better algorithms. Data Engineering Bulletin, 35(4), 3–6.
Stonebraker, M., & Hong, C. (2011). Requirements for science data bases and the SciDB project. CIDR Conference, 173–184.
Toomey, D. (2014). Data migration: A practical guide to transforming enterprise data. Technics Publications.
Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 12(4), 5–33.
Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S., & Stoica, I. (2010). Spark: Cluster computing with working sets. USENIX HotCloud Proceedings, 1–7.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 International Journal of Machine Learning for Sustainable Development

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Impact Factor :
JCR Impact Factor: 5.9 (2020)
JCR Impact Factor: 6.1 (2021)
JCR Impact Factor: 6.7 (2022)
JCR Impact Factor: 7.6 (2023)
JCR Impact Factor: 8.6 (2024)
JCR Impact Factor: Under Evaluation (2025)
A Double-Blind Peer-Reviewed Refereed Journal